首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene clone libraries. Results showed that rhizosphere anammox contributed to 31–41% N2 production with activities of 0.33–0.64 nmol N2 g−1 soil h−1, whereas the non-rhizosphere anammox bacteria contributed to only 2–3% N2 production with lower activities of 0.08–0.26 nmol N2 g−1 soil h−1. Higher anammox bacterial cells were observed (0.75–1.4 × 107 copies g−1 soil) in the rhizosphere, which were twofold higher compared with the non-rhizosphere soil (3.7–5.9 × 106 copies g−1 soil). Phylogenetic analysis of the anammox bacterial 16S rRNA genes indicated that two genera of ‘Candidatus Kuenenia'' and ‘Candidatus Brocadia'' and the family of Planctomycetaceae were identified. We suggest the rhizosphere provides a favorable niche for anammox bacteria, which are important to N cycling, but were previously largely overlooked.  相似文献   

2.
Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584±101 and 58±20 μmol N m−2 h−1 for cyanobacterial and lichen crust, respectively. Complete denitrification to N2 was further confirmed by an 15NO3 tracer experiment with intact crust pieces that proceeded at rates of 103±19 and 27±8 μmol N m−2 h−1 for cyanobacterial and lichen crust, respectively. Strikingly, N2O gas was emitted at very high potential rates of 387±143 and 31±6 μmol N m−2 h−1 from the cyanobacterial and lichen crust, respectively, with N2O accounting for 53–66% of the total emission of nitrogenous gases. Microsensor measurements revealed that N2O was produced in the anoxic layer and thus apparently originated from incomplete denitrification. Using quantitative PCR, denitrification genes were detected in both the crusts and were expressed either in comparable (nirS) or slightly higher (narG) numbers in the cyanobacterial crusts. Although 99% of the nirS sequences in the cyanobacterial crust were affiliated to an uncultured denitrifying bacterium, 94% of these sequences were most closely affiliated to Paracoccus denitrificans in the lichen crust. Sequences of nosZ gene formed a distinct cluster that did not branch with known denitrifying bacteria. Our results demonstrate that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N2O gas emission and potentially reduces desert soil fertility.  相似文献   

3.

Background

We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis.

Results

We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10−55). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization.

Conclusions

Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0080-6) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
The kinetics of photodegradation of moxifloxacin (MF) in aqueous solution (pH 2.0–12.0), and organic solvents has been studied. MF photodegradation is a specific acid-base catalyzed reaction and follows first-order kinetics. The apparent first-order rate constants (kobs) for the photodegradation of MF range from 0.69 × 10−4 (pH 7.5) to 19.50 × 10−4 min−1 (pH 12.0), and in organic solvents from 1.24 × 10−4 (1-butanol) to 2.04 × 10−4 min−1 (acetonitrile). The second-order rate constant (k2) for the [H+]-catalyzed and [OH]-catalyzed reactions are 6.61 × 10−2 and 19.20 × 10−2 M−1 min−1, respectively. This indicates that the specific base-catalyzed reaction is about three-fold faster than that of the specific acid-catalyzed reaction probably as a result of the rapid cleavage of diazabicyclononane side chain in the molecule. The kobs-pH profile for the degradation reactions is a V-shaped curve indicating specific acid-base catalysis. The minimum rate of photodegradation at pH 7–8 is due to the presence of zwitterionic species. There is a linear relation between kobs and the dielectric constant and an inverse relation between kobs and the viscosity of the solvent. Some photodegraded products of MF have been identified and pathways proposed for their formation in acid and alkaline solutions.KEY WORDS: acid-base catalysis, kinetics, moxifloxacin, photodegradation, rate–pH profile, solvent effect  相似文献   

6.
IntroductionSystemic lupus erythematosus (SLE) is a multisystem autoimmune disease. Currently, numerous genetic loci of SLE have been confirmed. Here we try to further explore additional genes contributing to SLE susceptibility in this study.MethodsForty nine single nucleotide polymorphisms (SNPs) with moderate-risk for SLE in previous study were genotyped in a large-scale replication study with a total of 3,522 cases and 8,252 controls using the Sequenom Massarray system. Association analyses were performed using logistic regression with gender or sample cohorts as a covariate through PLINK 1.07 software.ResultsThis replication effort confirmed five reported SLE susceptibility loci reaching genome-wide levels of significance (Pmeta <5.00 × 10−08): TNFSF4 (rs1418190, odds ratio (OR) = 0.81, Pmeta = 1.08 × 10−08; rs4916219, OR = 0.80, Pmeta = 7.77 × 10−09), IRF8 (rs2934498, OR = 1.25, Pmeta = 4.97 × 10−09), miR-146a (rs2431697, OR = 0.69, Pmeta = 1.15 × 10−22), CD44 (rs2732547, OR = 0.82, Pmeta = 1.55 × 10−11), and TMEM39A (rs12494314, OR = 0.84, Pmeta = 1.01 × 10−09). Further logistic regression analysis indicated that the genetic effects within TNFSF4 detected in this study are independent from our previously reported signals.ConclusionsThis study increases the number of established susceptibility loci for SLE in Han Chinese population and highlights the contribution of multiple variants of modest effect. Although further studies will be required to identify the causal alleles within these loci, the findings make a significant step forward in our understanding of the genetic contribution to SLE in Chinese population.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0602-9) contains supplementary material, which is available to authorized users.  相似文献   

7.
IntroductionSystemic sclerosis (SSc) and primary biliary cirrhosis (PBC) are rare polygenic autoimmune diseases (AIDs) characterized by fibroblast dysfunction. Furthermore, both diseases share some genetic bases with other AIDs, as evidenced by autoimmune gene pleiotropism. The present study was undertaken to investigate whether single-nucleotide polymorphisms (SNPs) identified by a large genome-wide association study (GWAS) in PBC might contribute to SSc susceptibility.MethodsSixteen PBC susceptibility SNPs were genotyped in a total of 1,616 patients with SSc and 3,621 healthy controls from two European populations (France and Italy).ResultsWe observed an association between PLCL2 rs1372072 (odds ratio (OR) = 1.22, 95% confidence interval (CI) 1.12 to 1.33, Padj = 7.22 × 10−5), nuclear factor-kappa-B (NF-κB) rs7665090 (OR = 1.15, 95% CI 1.06 to 1.25, Padj = 0.01), and IRF8 rs11117432 (OR = 0.75, 95% CI 0.67 to 0.86, Padj = 2.49 × 10−4) with SSc susceptibility. Furthermore, phenotype stratification showed an association between rs1372072 and rs11117432 with the limited cutaneous subgroup (lcSSc) (Padj = 4.45 × 10−4 and Padj = 0.001), whereas rs7665090 was associated with the diffuse cutaneous subtype (dcSSc) (Padj = 0.003). Genotype-mRNA expression correlation analysis revealed that the IRF8 protective allele was associated with increased interferon-gamma (IFN-γ) expression (P = 0.03) in patients with SSc but decreased type I IFN (IFIT1) expression in patients and controls (P = 0.02). In addition, we found an epistatic interaction between NF-κB and IRF8 (OR = 0.56, 95% CI 0.00 to 0.74, P = 4 × 10−4) which in turn revealed that the IRF8 protective effect is dependent on the presence of the NF-κB susceptibility allele.ConclusionsAn analysis of pleiotropic genes identified two new susceptibility genes for SSc (NF-κB and PLCL2) and confirmed the IRF8 locus. Furthermore, the IRF8 variant influenced the IFN signature, and we found an interaction between IRF8 and NF-κB gene variants that might play a role in SSc susceptibility.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0572-y) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
The competition for glucose between Escherichia coli ML30, a typical copiotrophic enterobacterium and Chelatobacter heintzii ATCC29600, an environmentally successful strain, was studied in a carbon-limited culture at low dilution rates. First, as a base for modelling, the kinetic parameters μmax and Ks were determined for growth with glucose. For both strains, μmax was determined in batch culture after different precultivation conditions. In the case of C. heintzii, μmax was virtually independent of precultivation conditions. When inoculated into a glucose-excess batch culture medium from a glucose-limited chemostat run at a dilution rate of 0.075 h−1 C. heintzii grew immediately with a μmax of 0.17±0.03 h−1. After five transfers in batch culture, μmax had increased only slightly to 0.18±0.03 h−1. A different pattern was observed in the case of E. coli. Inoculated from a glucose-limited chemostat at D=0.075 h−1 into glucose-excess batch medium E. coli grew only after an acceleration phase of ∼3.5 h with a μmax of 0.52 h−1. After 120 generations and several transfers into fresh medium, μmax had increased to 0.80±0.03 h−1. For long-term adapted chemostat-cultivated cells, a Ks for glucose of 15 μg l−1 for C. heintzii, and of 35 μg l−1 for E. coli, respectively, was determined in 14C-labelled glucose uptake experiments. In competition experiments, the population dynamics of the mixed culture was determined using specific surface antibodies against C. heintzii and a specific 16S rRNA probe for E. coli. C. heintzii outcompeted E. coli in glucose-limited continuous culture at the low dilution rates of 0.05 and 0.075 h−1. Using the determined pure culture parameter values for Ks and μmax, it was only possible to simulate the population dynamics during competition with an extended form of the Monod model, which includes a finite substrate concentration at zero growth rate (smin). The values estimated for smin were dependent on growth rate; at D=0.05 h−1, it was 12.6 and 0 μg l−1 for E. coli and C. heintzii, respectively. To fit the data at D=0.075 h−1, smin for E. coli had to be raised to 34.9 μg l−1 whereas smin for C. heintzii remained zero. The results of the mathematical simulation suggest that it is not so much the higher Ks value, which is responsible for the unsuccessful competition of E. coli at low residual glucose concentration, but rather the existence of a significant smin.  相似文献   

11.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

12.
IntroductionThe aim of this study was to characterize the association of human leukocyte antigen (HLA) B alleles and major histocompatibility complex (MHC) single nucleotide polymorphisms (SNPs) with Behçet’s disease (BD) in an Iranian dataset.MethodsThe association of three SNPs in the MHC region previously identified as the most associated in high-density genotyping studies was tested in a case–control study on 973 BD patients and 825 controls from Iran, and the association of HLA-B alleles was tested in a subset of 681 patients and 414 controls.ResultsWe found that HLA-B*51 (P = 4.11 × 10−41, OR [95% CI] = 4.63[3.66-5.85]) and B*15 confer risk for BD (P = 2.83 × 10−2, OR [95% CI] = 1.75[1.08-2.84]) in Iranian, and in B*51 negative individuals, only the B*15 allele is significantly associated with BD (P = 2.51 × 10−3, OR [95% CI] = 2.40[1.37-4.20]). rs76546355, formerly known as rs116799036, located between HLA-B and MICA (MHC class I polypeptide-related sequence A), demonstrated the same level of association with BD as HLA-B*51 (Padj = 1.78 × 10−46, OR [95% CI] = 5.46[4.21-7.09], and Padj = 8.34 × 10−48, OR [95% CI] = 5.44[4.20-7.05], respectively) in the HLA-B allelotyped subset, while rs2848713 was less associated (Padj = 7.14 × 10−35, OR [95% CI] = 3.73[2.97-4.69]) and rs9260997 was not associated (Padj = 1.00 × 10−1). Additionally, we found that B*51 genotype-phenotype correlations do not survive Bonferroni correction, while carriers of the rs76546355 risk allele predominate in BD cases with genital ulcers, positive pathergy test and positive BD family history (2.31 × 10−4 ≤ P ≤ 1.59 × 10−3).ConclusionsWe found that the HLA-B*51 allele and the rs76546355/rs116799036 MHC SNP are independent genetic risk factors for BD in Iranian, and that positivity for the rs76546355/rs116799036 risk allele, but not for B*51, does correlate with specific demographic characteristics or clinical manifestations in BD patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0585-6) contains supplementary material, which is available to authorized users.  相似文献   

13.
Blackberry is an economically important crop in Mexico, and its yield is substantially reduced by gray mold, a disease caused by Botrytis cinerea. One of the means to obtain B. cinerea-resistant plants is gamma irradiation. Shoot tips of in vitro-micropropagated blackberry plants (Rubus fruticosus ‘Tupy’) were irradiated with five doses of Cobalt-60 gamma radiation (0, 15, 30, 45, and 60 Gy) and cultured on Murashige and Skoog basal medium containing 1.0 mg l−1 benzylaminopurine and 0.06 mg l−1 indole-3-butyric acid (MSB medium). After 28 days of culture, survival was evaluated to determine mean lethal dose (LD50), and 200 shoots were further irradiated at the determined LD50 (30.8 Gy). After 28 days, the surviving shoots were micropropagated on MSB medium for 60 days. Non-irradiated shoots were screened for the in vitro selection of resistant B. cinerea, exposing them to different concentrations of sterile culture filtrate of B. cinerea (0, 2, 4, 6, 8, and 10 g l−1) for 28 days to determine mean lethal concentration (LC50), and the irradiated surviving shoots were further exposed to the determined LC50 (4.6 g l−1). Three surviving lines (rfgum5, rfgum6, and rfgum17) that did not present changes compared with the control shoots were micropropagated to obtain plantlets, which were further subjected to in vitro resistance assays using detached leaves inoculated with B. cinerea (1×103 spores ml−1). Plants of rfgum5 and rfgum6 mutant lines were highly resistant and presented similar growth to control plants. Therefore, this methodology is useful to obtain B. cinerea-resistant blackberry plants.  相似文献   

14.
This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities.  相似文献   

15.
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.  相似文献   

16.
Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world’s second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin’s lowland forests (0.97 ± 0.53 kg N ha−1 year−1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha−1 year−1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.Subject terms: Microbiology, Biogeochemistry  相似文献   

17.
Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots'' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities.  相似文献   

18.
19.
Histamine is a degradation product of the bacterial decarboxylation of the amino acid histidine; such activity is determined by histidine decarboxylase encoded by a gene cluster, carried by some Gram-positive bacteria, that includes the hdcA gene. In this study, the presence of the hdcA gene in ready-to-eat surströmming samples collected from three producers based in Sweden was directly assessed via qPCR analysis for the very first time. Samples from producer A showed hdcA average gene abundance of 6.67 ± 0.13 Log cells/gene copies g−1; in samples from producer B the average value attested at 5.56 ± 0.06 Log cells/gene copies g−1, whereas for samples of producer C hdcA average gene abundance attested at 5.30 ± 0.08 Log cells/gene copies g−1. ANOVA showed a significantly higher average hdcA gene copy number in samples from producer A, whereas no significant differences were seen between average values of hdcA gene copy numbers detected in samples from producer B and C. The hdcA gene copies detected in the present study could give an estimation of the load of potential histamine-producing bacteria in surströmming.  相似文献   

20.
The use of F420 as a parameter for growth or metabolic activity of methanogenic bacteria was investigated. Two representative species of methanogens were grown in batch culture: Methanobacterium bryantii (strain M.o.H.G.) on H2 and CO2, and Methanosarcina barkeri (strain Fusaro) on methanol or acetate. The total intracellular content of coenzyme F420 was followed by high-resolution fluorescence spectroscopy. F420 concentration in M. bryantii ranged from 1.84 to 3.65 μmol · g of protein−1; and in M. barkeri grown with methanol it ranged from 0.84 to 1.54 μmol · g−1 depending on growth conditions. The content of F420 in M. barkeri was influenced by a factor of 2 depending on the composition of the medium (minimal or complex) and by a factor of 3 to 4 depending on whether methanol or acetate was used as the carbon source. A comparison of F420 content with protein, cell dry weight, optical density, and specific methane production rate showed that the intracellular content of F420 approximately followed the increase in biomass in both strains. In contrast, no correlation was found between specific methane production rate and intracellular F420 content. However, qCH4(F420), calculated by dividing the methane production rate by the coenzyme F420 concentration, almost paralleled qCH4(protein). These results suggest that F420 may be used as a specific parameter for estimating the biomass, but not the metabolic activity, of methanogens; hence qCH4(F420) determined in mixed populations with complex carbon substrates must be considered as measure of the actual methanogenic activity and not as a measure of potential activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号