首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell》2021,184(26):6299-6312.e22
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
Acute lung injury (ALI) is a common lung pathology that is accompanied by alveolar macrophage (AM) activation and inflammatory response. This study investigated the role of the long non-coding RNA NONRATT004344 (hereafter named lncRNA NLRP3) in regulating the Nod-like receptor protein 3 (NLRP3)-triggered inflammatory response in early ALI and the underlying mechanism as well. We established LPS-induced ALI models to explore their interactive mechanisms in vitro and in vivo. Luciferase reporter assays were performed to determine that miR-138-5p could bind to lncRNA NLRP3 and NLRP3. We observed increased lncRNA NLRP3 expression, decreased miR-138-5p expression, NLRP3 inflammasome activation, and upregulated caspase-1, IL-1β, and IL-18 expression in the LPS-induced ALI model. Furthermore, lncRNA NLRP3 overexpression activated the NLRP3 inflammasome and promoted IL-1β and IL-18 secretion; the miR-138-5p mimic abolished these effects in vivo and in vitro. Consistently, miR-138-5p inhibition reversed the effects of lncRNA NLRP3 silencing on the expression of NLRP3-related molecules and inhibition of the NLRP3/caspase-1/IL-1β signalling pathway. Mechanistically, lncRNA NLRP3 sponging miR-138-5p facilitated NLRP3 activation through a competitive endogenous RNA (ceRNA) mechanism. In summary, our results suggested that lncRNA NLRP3 binding miR-138-5p promotes NLRP3-triggered inflammatory response via lncRNA NLRP3/miR-138-5p/NLRP3 ceRNA network (ceRNET) and provides insights into the treatment of early ALI.Subject terms: Bacterial infection, Inflammasome  相似文献   

4.
《Cell》2021,184(26):6224-6226
  相似文献   

5.
NLRP3炎症体与炎症性疾病   总被引:1,自引:0,他引:1  
炎症体是胱天蛋白酶的活化平台,并促进一些前炎症细胞因子如IL-1β、IL-18和IL-33的成熟,启动机体的先天性免疫防御功能。炎症体的激活和失调与人类先天及后天的炎症性疾病都密切相关。通过对NLRP1、NL-RP3、IPAF和AIM2炎症体调节机制的研究,可为家族性周期性自身炎症反应、痛风、II型糖尿病等的治疗提供新的靶点。主要就NLRP3炎症体的组成、分布和调节机制及与NLRP3炎症体相关的炎症性疾病进行了简要介绍。  相似文献   

6.
7.
Infl ammasome is a large protein complex activated upon cellular stress or microbial infection, which triggers maturation of pro-inflammatory cytokines interleukin-1β and interleukin-18 through caspase-1 activation. Nod-like receptor family protein 3 (NLRP3) is the most characterized infl ammasome activated by various stimuli. However, the mechanism of its activation is unclear and its exact cellular localization is still unknown. We examined the potential co-localization of NLRP3 infl ammasome with mitochondria and seven other organelles under adenosine triphosphate, nigericin or monosodium urate stimulation in mouse peritoneal macrophages using confocal microscopy approach. Our results revealed that the activated endogenous apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome forms in the cytoplasm and co-localizes with NLRP3 and caspase-1, but not with any of the organelles screened. This study indicates that the ASC pyroptosome universally localizes within the cytoplasm rather than with any specifi c organelles.  相似文献   

8.
Multi-protein complexes called inflammasomes have recently been identified and shown to contribute to cell death in tissue injury. Intravenous immunoglobulin (IVIg) is an FDA-approved therapeutic modality used for various inflammatory diseases. The objective of this study is to investigate dynamic responses of the NLRP1 and NLRP3 inflammasomes in stroke and to determine whether the NLRP1 and NLRP3 inflammasomes can be targeted with IVIg for therapeutic intervention. Primary cortical neurons were subjected to glucose deprivation (GD), oxygen–glucose deprivation (OGD) or simulated ischemia-reperfusion (I/R). Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion. Neurological assessment was performed, brain tissue damage was quantified, and NLRP1 and NLRP3 inflammasome protein levels were evaluated. NLRP1 and NLRP3 inflammasome components were also analyzed in postmortem brain tissue samples from stroke patients. Ischemia-like conditions increased the levels of NLRP1 and NLRP3 inflammasome proteins, and IL-1β and IL-18, in primary cortical neurons. Similarly, levels of NLRP1 and NLRP3 inflammasome proteins, IL-1β and IL-18 were elevated in ipsilateral brain tissues of cerebral I/R mice and stroke patients. Caspase-1 inhibitor treatment protected cultured cortical neurons and brain cells in vivo in experimental stroke models. IVIg treatment protected neurons in experimental stroke models by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Our findings provide evidence that the NLRP1 and NLRP3 inflammasomes have a major role in neuronal cell death and behavioral deficits in stroke. We also identified NLRP1 and NLRP3 inflammasome inhibition as a novel mechanism by which IVIg can protect brain cells against ischemic damage, suggesting a potential clinical benefit of therapeutic interventions that target inflammasome assembly and activity.  相似文献   

9.
Periodontitis is an inflammatory condition that destroys the tooth-supporting tissues, as a result of local bacterial infection. Aggregatibacter actinomycetemcomitans is a Gram-negative facultative anaerobic species, highly associated with aggressive periodontitis. Periodontal inflammation is dominated by cytokines of the Interleukin (IL)-1 family. Prior to their secretion by mononuclear cells, IL-1 cytokines are processed by intracellular protein complexes, known as "inflammasomes", which can sense the bacterial challenge. The aim of this study was to investigate which inflammasomes are regulated in mononuclear cells in response to A. actinomycetemcomitans. The D7SS strain and its derivative leukotoxin and cytolethal distending toxin knock-out mutant strains were used to infect human mononuclear cells at a 1:10 cell: bacteria ratio, for 3 h. The expression of various inflammasome components in the cells was investigated by TaqMan quantitative real-time polymerase chain reaction (qPCR). The expressions of NOD-like receptor protein (NLRP)1, NLRP2 and Absent In Melanoma (AIM)2 inflammasome sensors, as well as their effector Caspase-1 were not affected. However, NLRP3 was up-regulated, while NLRP6 was down-regulated. This effect was not dependent on the leukotoxin or the cytolethal distending toxin, as demonstrated by the use of specific gene knock-out mutant strains. IL-1β and IL-18 expressions were also up-regulated by the bacterial challenge. In conclusion, A. actinomycetemcomitans enhances NLRP3 and reduces NLRP6 inflammasome expression, irrespective of its major virulence factors, confirming the high pathogenic profile of this species, and providing further insights to the mechanisms of periodontal inflammation.  相似文献   

10.
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identifi ed to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.  相似文献   

11.
NLRP3 炎性小体是一种分子量约为700Kda 的大分子多蛋白复合体,能被多种病原相关的分子模式或损伤相关的分子模式 活化,对固有免疫系统免疫功能的发挥具有极其重要的作用。但如果其被过度激活则可通过活化的半胱天冬酶-1 持续地将 pro-IL-1茁和pro-IL-18 剪切为成熟的IL-1茁和IL-18,进而激活下游信号转导通路,产生大量的炎性介质,引起机体发生严重的炎 症反应,最终促进多种炎症性疾病的发生与发展,如Muckle-Wells综合征、2 型糖尿病、非酒精性脂肪肝、动脉粥样硬化、炎症性肠 病和阿尔兹海默病等。因此,对NLRP3 炎性小体进行深入的研究不仅有助于阐释固有免疫系统如何有效地发挥其免疫功能,而 且作为系列炎症反应的核心,NLRP3 炎性小体还可能成为多种炎症性疾病防治的新靶点。我们就NLRP3 炎性小体的结构与功 能,激活与调控,分布与疾病的近期研究作一综述。  相似文献   

12.
Cryptococcus neoformans (C. neoformans) is an opportunistic fungal pathogen that mainly infects immunocompromised individuals such as AIDS patients. Although cell surface receptors for recognition of C. neoformans have been studies intensively, cytoplasmic recognition of this pathogen remains unclear. As an important detector of pathogen infection, inflammasome can sense and get activated by infection of various pathogens, including pathogenic fungi such as Candida albicans and Aspergillus fumigatus. Our present study showed that acapsular C. neoformans (cap59Δ) activated the NLRP3-, but not AIM2-nor NLRC4- inflammasome. During this process, viability of the fungus was required. Moreover, our in vivo results showed that during the pulmonary infection of cap59Δ, immune cell infiltration into the lung and effective clearance of the fungus were both dependent on the presence of NLRP3 inflammasome. In summary, our data suggest that the capsule of C. neoformans prevents recognition of the fungus by host NLRP3 inflammasome and indicate that manipulation of inflammasome activity maybe a novel approach to control C. neoformans infection.  相似文献   

13.
Adenovirus type 5 (Ad5) infection of macrophages results in rapid secretion of interleukin-1β (IL-1β) and is dependent on the inflammasome components NLRP3 and ASC and the catalytic activity of caspase-1. Using lentivirus-expressed short hairpin RNA (shRNA) and competitive inhibitors, we show that Ad-induced IL-1β release is dependent upon Toll-like receptor 9 (TLR9) sensing of the Ad5 double-stranded DNA (dsDNA) genome in human cell lines and primary monocyte-derived macrophages but not in mouse macrophages. Additionally, a temperature-sensitive mutant of Ad5 unable to penetrate endosomal membranes, ts1, is unable to induce IL-1β release in TLR2-primed THP-1 cells, suggesting that penetration of endosomal membranes is required for IL-1β release. Disruption of lysosomal membranes and the release of cathepsin B into the cytoplasm are required for Ad-induced NLRP3 activation. Ad5 cell entry also induces reactive oxygen species (ROS) production, and inhibitors of ROS prevent Ad-induced IL-1β release. Ad5 activation of NLRP3 also induces necrotic cell death, resulting in the release of the proinflammatory molecule HMGB1. This work further defines the mechanisms of virally induced inflammasome activation.  相似文献   

14.
Differential expression of NLRP3 among hematopoietic cells   总被引:1,自引:0,他引:1  
Although the importance of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in health and disease is well appreciated, a precise characterization of NLRP3 expression is yet undetermined. To this purpose, we generated a knock-in mouse in which the Nlrp3 coding sequence was substituted for the GFP (enhanced GFP [egfp]) gene. In this way, the expression of eGFP is driven by the endogenous regulatory elements of the Nlrp3 gene. In this study, we show that eGFP expression indeed mirrors that of NLRP3. Interestingly, splenic neutrophils, macrophages, and, in particular, monocytes and conventional dendritic cells showed robust eGFP fluorescence, whereas lymphoid subsets, eosinophils, and plasmacytoid dendritic cells showed negligible eGFP levels. NLRP3 expression was highly inducible in macrophages, both by MyD88- and Trif-dependent pathways. In vivo, when mice were challenged with diverse inflammatory stimuli, differences in both the number of eGFP-expressing cells and fluorescence intensity were observed in the draining lymph node. Thus, NLRP3 levels at the site of adaptive response initiation are controlled by recruitment of NLRP3-expressing cells and by NLRP3 induction.  相似文献   

15.
炎性小体是先天性免疫系统的受体和传感器,在许多疾病的发生和进展中起着关键的病理作用。近期研究表明,NOD样受体家族核苷酸结合寡聚化结构域样受体3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3)炎性小体参与了对公共健康具有高度影响的疾病的发生,如肌肉骨骼系统疾病。肌肉骨骼系统疾病是主要由工作和周围环境引起或加重的肌肉、关节、骨骼等运动系统疾病,以及相关神经、循环系统损伤的疾病。NLRP3小体的激活可以诱导炎症及引发焦亡,造成机体进一步损伤。因此,以NLRP3炎性小体为切入点,开展对肌肉骨骼系统疾病的预防和治疗具有重要意义。研究炎症性疾病中NLRP3炎性小体活动的机制及作用已然成为新的研究方向。本文对NLRP3炎性小体的激活途径及机制进行了概述,并分析了NLRP3炎性小体在肌少症、骨质疏松症和关节炎等肌肉骨骼系统疾病中的作用,以期为肌肉骨骼系统疾病的治疗提供理论依据。  相似文献   

16.
NLRP3炎性小体研究新进展   总被引:1,自引:0,他引:1  
张懿  刘磊  刘韵资  张婷  蒋春雷 《生物磁学》2014,(9):1763-1765,1743
NLRP3炎性小体是一种分子量约为700Kda的大分子多蛋白复合体,能被多种病原相关的分子模式或损伤相关的分子模式活化,对固有免疫系统免疫功能的发挥具有极其重要的作用。但如果其被过度激活则可通过活化的半胱天冬酶-1持续地将pro-IL-1β和pro-IL-18剪切为成熟的IL-1β和IL-18,进而激活下游信号转导通路,产生大量的炎性介质,引起机体发生严重的炎症反应,最终促进多种炎症性疾病的发生与发展,如Muckle—wells综合征、2型糖尿病、非酒精性脂肪肝、动脉粥样硬化、炎症性肠病和阿尔兹海默病等。因此,对NLRP3炎性小体进行深入的研究不仅有助于阐释固有免疫系统如何有效地发挥其免疫功能,而且作为系列炎症反应的核心,NLRP3炎性小体:还可能成为多种炎症性疾病防治的新靶点。我们就NLRP3炎性小体的结构与功能,激活与调控,分布与疾病的近期研究作一综:违。  相似文献   

17.
NLRP3 is the most studied inflammasome sensor due to its crucial involvement in sterile and infection-triggered inflammation. Although its molecular mode of activation remains to be defined, it is well established that low intracellular potassium concentrations result in its activation. This functionality allows the classical NLRP3 pathway to serve as a highly sensitive, but non-specific surveillance mechanism responding to any type of perturbation that breaches plasma membrane integrity and the associated potassium gradient across the membrane. Here, we review our current knowledge on potassium efflux-dependent NLRP3 activation, with a special focus on how major cell death programs are rendered pro-inflammatory by secondary NLRP3 activation. Apart from the “alternative inflammasome” as the major exception to the rule, this connection explains the fundamental importance of NLRP3 in cell death-associated inflammation and firmly establishes NLRP3 as a principal surveillance mechanism of cellular integrity.  相似文献   

18.
The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is a cytoplasmic supramolecular complex that is activated in response to cellular perturbations triggered by infection and sterile injury. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which induces the maturation and release of interleukin-1β (IL-1β) and IL-18, as well as cleavage of gasdermin D (GSDMD), which promotes a lytic form of cell death. Production of IL-1β via NLRP3 can contribute to the pathogenesis of inflammatory disease, whereas aberrant IL-1β secretion through inherited NLRP3 mutations causes autoinflammatory disorders. In this review, we discuss recent developments in the structure of the NLRP3 inflammasome, and the cellular processes and signaling events controlling its assembly and activation.  相似文献   

19.
20.
Highlights? Inhibition of deubiquitination blocks inflammasome activation ? Inhibition of deubiquitination induces NLRP3 polyubiquitination ? Deubiquitination of NLRP3 regulates the activation of inflammasome ? The deubiquitinating enzyme BRCC3 deubiquitinates the LRR domain of NLRP3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号