首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background

Riboflavin (RF) or vitamin B2 is known to have neuroprotective effects. In the present study, we report the attenuation of the neuroprotective effects of RF under UV-B irradiation. Preconditioning of UV-B irradiated riboflavin (UV-B-RF) showed attenuated neuroprotective effects compared to that of RF in SH-SY5Y neuroblostoma cell line and primary cortical neurons in vitro and a rat model of cerebral ischemia in vivo.

Results

Results indicated that RF pretreatment significantly inhibited cell death and reduced LDH secretion compared to that of the UV-B-RF pretreatment in primary cortical neuron cultures subjected to oxygen glucose deprivation in vitro and cortical brain tissue subjected to ischemic injury in vivo. Further mechanistic studies using cortical neuron cultures revealed that RF treatment induced increased miR-203 expression which in turn inhibited c-Jun expression and increased neuronal cell survival. Functional assays clearly demonstrated that the UV-B-RF preconditioning failed to sustain the increased expression of miR-203 and the decreased levels of c-Jun, mediating the neuroprotective effects of RF. UV-B irradiation attenuated the neuroprotective effects of RF through modulation of the miR-203/c-Jun signaling pathway.

Conclusion

Thus, the ability of UV-B to serve as a modulator of this neuroprotective signaling pathway warrants further studies into its role as a regulator of other cytoprotective/neuroprotective signaling pathways.  相似文献   

2.
3.
4.
5.
In cultivated in vitro interphase animal cells, microtubules form a network whose density is highest in the central cell area, in the region of centrosome, and decreases towards the cell periphery. Since identification of individual microtubules in the central cell area is significantly difficult and more often is impossible, there are several approaches to studying microtubules in the internal cell cytoplasm. These approaches are based on a decrease of microtubule density—both real, due to their partial depolymerization (by the action of cold temperatures or cytostatics), or apparent, due to a decrease of cell thickness (by photobleaching of preexisting microtubules and analysis of newly formed ones). In the present work, we propose a method based on the determination of optical density which allows evaluation of the state of the cytoplasmic microtubule system as a whole. The method consists of a comparison of the dependences describing changes of the microtubule optical density from the cell center to the periphery in controls and in experiments. Analysis of living cells by the proposed method has shown that the character of curves describing the decrease of optical density from the cell center to its periphery is different for various cell types; the dependence can be described both as an exponential regression (the CHO cell line) and as a linear regression (the NIH-3T3 and REF cell lines). Our previous studies have allowed the suggestion that the character of the dependence is determined by the ratio of free and centrosome-attached microtubules and by the position of their ends in the cell cytoplasm. To test this hypothesis, we considered model systems with all microtubules assumed to be in a straight orientation and divergent radially from the centrosome, but with different arrangements of plus-and minus-ends. In the model system, in which all the microtubule minus-ends are attached to the centrosome while the plus-ends are at different distances from it, the microtubule density is described by the exponential (f(x) = ae ?bx ). Introduction of free microtubules into the system leads to a change of the character of this dependence, and the system in which the concentration of free microtubules with minus ends located at different distances from the cytoplasm is 5 times higher than that of the centrosome-attached microtubules is described by the linear regression equation (f(x) = k * x + b), which corresponds to the experimentally obtained dependences for 3T3 and REF cells. Thus, we believe that even in cells with a radial microtubule system, free microtubules may constitute the majority.  相似文献   

6.
7.
8.
Kinetochores are large protein-based structures that assemble on centromeres during cell division and link chromosomes to spindle microtubules. Proper distribution of the genetic material requires that sister kinetochores on every chromosome become bioriented by attaching to microtubules from opposite spindle poles before progressing into anaphase. However, erroneous, non-bioriented attachment states are common and cellular pathways exist to both detect and correct such attachments during cell division. The process by which improper kinetochore-microtubule interactions are destabilized is referred to as error correction. To study error correction in living cells, incorrect attachments are purposely generated via chemical inhibition of kinesin-5 motor, which leads to monopolar spindle assembly, and the transition from mal-orientation to biorientation is observed following drug washout. The large number of chromosomes in many model tissue culture cell types poses a challenge in observing individual error correction events. Drosophila S2 cells are better subjects for such studies as they possess as few as 4 pairs of chromosomes. However, small molecule kinesin-5 inhibitors are ineffective against Drosophila kinesin-5 (Klp61F). Here we describe how to build a Drosophila cell line that effectively replaces Klp61F with human kinesin-5, which renders the cells sensitive to pharmacological inhibition of the motor and suitable for use in the cell-based error correction assay.  相似文献   

9.

Background

Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro.

Scope of review

This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems.

Major conclusions

The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased.

General significance

Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

10.
11.
Esophageal adenocarcinoma (EAC) has an overall survival rate of less than 17% and incidence of EAC has risen dramatically over the past two decades. One of the primary risk factors of EAC is Barrett’s esophagus (BE), a metaplastic change of the normal squamous esophagus in response to chronic heartburn. Despite the well-established connection between EAC and BE, interrogation of the molecular events, particularly altered signaling pathways involving progression of BE to EAC, are poorly understood. Much of this is due to the lack of suitable in vitro models available to study these diseases. Recently, immortalized BE cell lines have become commercially available allowing for in vitro studies of BE. Here, we present a method for immunofluorescent staining of immortalized BE cell lines, allowing in vitro characterization of cell signaling and structure after exposure to therapeutic compounds. Application of these techniques will help develop insight into the mechanisms involved in BE to EAC progression and provide potential avenues for treatment and prevention of EAC.  相似文献   

12.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

13.
MAP kinase phosphatases (MKPs) are important regulators of the activation levels and kinetics of MAP kinases. This is crucial for a large number of physiological processes during development and growth, as well as interactions with the environment, including the response to ultraviolet-B (UV-B) stress. Arabidopsis MKP1 is a key regulator of MAP kinases MPK3 and MPK6 in response to UV-B stress. However, virtually nothing is presently known about the post-translational regulation of plant MKPs in vivo. Here, we provide evidence that MKP1 is a phosphoprotein in vivo and that MKP1 accumulates in response to UV-B stress. Moreover, proteasome inhibitor experiments suggest that MKP1 is constantly turned-over under non-stress conditions and that MKP1 is stabilized upon stress treatment. Stress-responsive phosphorylation and stabilization of MKP1 demonstrate the post-translational regulation of a plant MKP in vivo, adding an additional regulatory layer to MAP kinase signaling in plants.  相似文献   

14.
15.
During the development of multicellular organisms the fate of individual cells is specified with great precision and reproducibility. Although classical genetic approaches led to the identification of many of the signaling pathways contributing to cell fate specification, they have provided little insight into the mechanisms that ensure robustness and reproducibility. We have used the specification of the R7 photoreceptor cells controlled by the Sevenless receptor tyrosine kinase (Sev) pathway to screen for modulators of pathway activity and to uncover the mechanisms underlying the robustness of cell fate decisions. Here we provide genetic evidence that the Drosophila SOCS36E adaptor protein containing an SH2 domain and a SOCS box acts as an attenuator of Sev signaling. Overexpression of Socs36E strongly suppresses the specification of extra R7 photoreceptor cells in response to constitutive activation of Sev, and loss of Socs36E function suppresses the loss of R7 cells when Sev activity is impaired. In a wild-type background, however, loss and gain of Socs36E function exhibits little effect on R7 specification. We also show that SH2 domain of SOCS36E is essential for this function in inhibiting Sev action and that Socs36E expression is suppressed by high Sev pathway activity. In our model, only the cell able to activate high levels of receptor tyrosine kinase signaling will repress SOCS36E expression, reduce the negative effect on Sev signaling and allow this cell to differentiate into R7. In contrast, the remaining cells fail to receive high signaling, and thus maintain high levels of SOCS36E. This represses residual Sev activity and blocks R7 development. Therefore, Socs36E constitutes a novel partially redundant feedback mechanism that contributes to the robustness of R7 specification. The SOCS family of adaptor proteins may have evolved as modulators of specific signaling pathways that contribute to the robustness and precision of cell fate specification.  相似文献   

16.
While enormous efforts have gone into identifying signaling pathways and molecules involved in normal and malignant cell behaviors1-2, much of this work has been done using classical two-dimensional cell culture models, which allow for easy cell manipulation. It has become clear that intracellular signaling pathways are affected by extracellular forces, including dimensionality and cell surface tension3-4. Multiple approaches have been taken to develop three-dimensional models that more accurately represent biologic tissue architecture3. While these models incorporate multi-dimensionality and architectural stresses, study of the consequent effects on cells is less facile than in two-dimensional tissue culture due to the limitations of the models and the difficulty in extracting cells for subsequent analysis.The important role of the microenvironment around tumors in tumorigenesis and tumor behavior is becoming increasingly recognized4. Tumor stroma is composed of multiple cell types and extracellular molecules. During tumor development there are bidirectional signals between tumor cells and stromal cells5. Although some factors participating in tumor-stroma co-evolution have been identified, there is still a need to develop simple techniques to systematically identify and study the full array of these signals6. Fibroblasts are the most abundant cell type in normal or tumor-associated stromal tissues, and contribute to deposition and maintenance of basement membrane and paracrine growth factors7.Many groups have used three dimensional culture systems to study the role of fibroblasts on various cellular functions, including tumor response to therapies, recruitment of immune cells, signaling molecules, proliferation, apoptosis, angiogenesis, and invasion8-15. We have optimized a simple method for assessing the effects of mammary fibroblasts on mammary epithelial cells using a commercially available extracellular matrix model to create three-dimensional cultures of mixed cell populations (co-cultures)16-22. With continued co-culture the cells form spheroids with the fibroblasts clustering in the interior and the epithelial cells largely on the exterior of the spheroids and forming multi-cellular projections into the matrix. Manipulation of the fibroblasts that leads to altered epithelial cell invasiveness can be readily quantified by changes in numbers and length of epithelial projections23. Furthermore, we have devised a method for isolating epithelial cells out of three-dimensional co-culture that facilitates analysis of the effects of fibroblast exposure on epithelial behavior. We have found that the effects of co-culture persist for weeks after epithelial cell isolation, permitting ample time to perform multiple assays. This method is adaptable to cells of varying malignant potential and requires no specialized equipment. This technique allows for rapid evaluation of in vitro cell models under multiple conditions, and the corresponding results can be compared to in vivo animal tissue models as well as human tissue samples.  相似文献   

17.
Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes–WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)–are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.  相似文献   

18.
T cell receptor (TCR) ligation (signal one) in the presence of co-stimulation (signal two) results in downstream signals that increase protein production enabling naïve T cells to fully activate and gain effector function. Enhanced production of proteins by a cell requires an increase in endoplasmic reticulum (ER) chaperone expression, which is accomplished through activation of a cellular mechanism known as the ER stress response. The ER stress response is initiated during the cascade of events that occur for the activation of many cells; however, this process has not been comprehensively studied for T cell function. In this study, we used primary T cells and mice circulating TCR transgenic CD8+ T cells to investigate ER chaperone expression in which TCR signaling was initiated in the presence or absence of co-stimulation. In the presence of both signals, in vitro and in vivo analyses demonstrated induction of the ER stress response, as evidenced by elevated expression of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in T cells exposed only to signal one, a treatment known to cause T cells to enter the ‘nonresponsive’ states of anergy and tolerance. Treatment of T cells with an inhibitor to protein kinase C (PKC), a serine/threonine protein kinase found downstream of TCR signaling, indicated PKC is involved in the induction of the ER stress response during the T cell activation process, thus revealing a previously unknown role for this signaling protein in T cells. Collectively, these data suggest that induction of the ER stress response through PKC signaling is an important component for the preparation of a T cell response to antigen.  相似文献   

19.
Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.  相似文献   

20.
S100A6 is a calcium binding protein expressed mainly in fibroblasts and epithelial cells. Interestingly, S100A6 is also present in extracellular fluids. Recently we have shown that S100A6 is secreted by WJMS cells and binds to integrin β1 (Jurewicz et al., 2014). In this work we describe for the first time the mechanism of S100A6 secretion and signaling pathways activated by the S100A6-integrin β1 complex. We show that colchicine suppressed the release of S100A6 into the cell medium, which indicates that the protein might be secreted via a tubulin–dependent pathway. By applying double immunogold labeling and immunofluorescence staining we have shown that S100A6 associates with microtubules in WJMS cells. Furthermore, results obtained from immunoprecipitation and proximity ligation assay (PLA), and from in vitro assays, reveal that S100A6 is able to form complexes with α and β tubulin in these cells, and that the S100A6-tubulin interaction is direct. We have also found that the S100A6 protein, due to binding to integrin β1, activates integrin-linked kinase (ILK), focal adhesion kinase (FAK) and p21-activated kinase (PAK). Our results suggest that binding of S100A6 to integrin β1 affects cell adhesion/proliferation due to activation of ILK and FAK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号