首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The discovery that plants contain multiple calmodulin (CaM) isoforms of variable sequence identity to animal CaM suggested an additional level of sophistication in the intracellular role of calcium regulation in plants. Past research has focused on the ability of conserved or divergent plant CaM isoforms to activate both mammalian and plant protein targets. At present, however, not much is known about how these isoforms respond to the signal of an increased cytosolic calcium concentration. Here, using isothermal titration calorimetry and NMR spectroscopy, we investigated the calcium binding properties of a conserved (CaM1) and a divergent (CaM4) CaM isoform from soybean (Glycine max). Both isoforms bind calcium with a semisequential pathway that favors the calcium binding EF-hands of the C-terminal lobe over those of the N-terminal lobe. From the measured dissociation constants, CaM4 binds calcium with a threefold greater affinity than CaM1 (Kd,Ca,mean of 5.0 versus 14.9 μM) but has a significantly reduced selectivity against the chemically similar magnesium cation that binds preferentially to EF-hand I of both isoforms. The implications of a potential magnesium/calcium competition on the activation of CaM1 and CaM4 are discussed in context with their ability to respond to stimulus-specific calcium signatures and their known physiological roles.  相似文献   

2.
Calcium/calmodulin-mediated signaling contributes in diverse roles in plant growth, development, and response to environmental stimuli.During calcium (Ca2+) signaling, decoding the stimulus-response coupling involves a set of Ca2+ sensor proteins or Ca2+-binding proteins (DeFalco et al., 2010a; Kudla et al., 2010). These proteins usually possess one or more classical helix-loop-helix elongation factor (EF) hand motifs. Three major types of Ca2+-sensor proteins in plants are calmodulin (CaM)/CaM-like proteins, calcium-dependent protein kinases (CDPKs), and calcineurin B-like proteins. As compared with animals, plant genomes encode more diversified Ca2+ sensors; with the exception of canonic CaM, all other types of Ca2+ sensors (CaM-like proteins, CDPKs, and calcineurin B-like proteins) are plant specific. The large population and unique structural composition of Ca2+-binding proteins and the diversity of the target proteins regulated by the Ca2+ sensors reflect the complexity of Ca2+ signaling, which helps plants adapt to the changing environment. This update will be limited primarily to discussions on CaM and CaM-binding proteins and the recent advances in Ca2+/CaM-mediated signaling.CaM is a conserved Ca2+-binding protein found in all eukaryotes. The discovery of CaM can be traced back to the 1970s. An activator of cyclic nucleotide phosphodiesterase was shown to be involved in the regulation of cAMP concentration, which was stimulated by Ca2+ (Kakiuchi and Yamazaki, 1970; Cheung, 1971). The activator was found to bind Ca2+ and was eventually named “calmodulin,” an abbreviation of Ca2+-modulated protein. Since its discovery over 40 years ago, CaM has been regarded as a model Ca2+-binding protein and has been subjected to intensive studies in biochemistry, cell biology, and molecular biology because of its importance in almost all aspects of cellular regulation (Poovaiah and Reddy, 1987, 1993; Bouche et al., 2005; DeFalco et al., 2010a; Du et al., 2011; Reddy et al., 2011b). Disruption or depletion of the single copy of the CaM gene in yeast (Saccharomyces cerevisiae) results in a recessive lethal mutation (Davis et al., 1986), suggesting that CaM has a critical role in eukaryotic cells.The structure of CaM has been well studied, and the prototype of CaM found in all eukaryotes has 149 amino acids with two globular domains, each containing two EF hands connected by a long flexible helix (Meador et al., 1993; Zhang et al., 1995; Yun et al., 2004; Ishida et al., 2009). As more and more genomes are sequenced, it is becoming clear that CaM belongs to a small gene family in plants. In the model plant Arabidopsis (Arabidopsis thaliana), seven CaM genes encode for four highly conserved isoforms (CaM1/4, CaM2/3/5, CaM6, and CaM7) that differ in only one to five amino acid residues. Loss-of-function mutations of individual CaMs indicate that the different CaMs may have overlapping yet different functions. For example, a loss of function in Arabidopsis AtCaM2 affects pollen germination (Landoni et al., 2010). Phenotypic analysis showed that in normal growth conditions, atcam2-2 plants were indistinguishable from the wild type, while genetic analysis showed a reduced transmission of the atcam2-2 allele through the male gametophyte, and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. However, the atcam3 knockout mutant showed a clear reduction in thermotolerance after heat treatment at 45°C for 50 min (Zhang et al., 2009). Overexpression of AtCaM3 in either the atcam3 knockout or wild-type background significantly rescued or increased the thermotolerance, respectively. Further analysis of individual CaM mutants under different stress conditions should reveal more on the functional significance of individual CaM genes.  相似文献   

3.
Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi.  相似文献   

4.
5.
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca2+) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca2+ oscillations. Among these an ion channel, Doesn''t Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca2+ ATPase is localized on both the inner and outer nuclear envelopes. Doesn''t Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca2+ into the nucleus. Ca2+ channels and Ca2+ pumps are needed for the release and reuptake of Ca2+ from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca2+ remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca2+ oscillations. This model can recapitulate Ca2+ oscillations, and with the inclusion of Ca2+-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.Plant growth is frequently limited by the essential nutrients nitrogen and phosphorus. Several plant species have established symbiotic relationships with microorganisms to overcome such limitations. In addition to the symbiotic relationship with arbuscular mycorrhizal fungi that many plants establish in order to secure their uptake of water, phosphorus, and other nutrients (Harrison, 2005; Parniske, 2008), legumes have developed interactions with bacteria called rhizobia, resulting in the fixation of atmospheric nitrogen within the plant root (Lhuissier et al., 2001; Gage, 2004; Riely et al., 2006).Root symbioses initiate with signal exchanges in the soil. Plant signals are perceived by the symbionts, triggering the successive release of microbial signals. For rhizobia, the signal molecules are lipochitooligosaccharides termed Nod factors (Dénarié et al., 1996), and the release of lipochitooligosaccharides has also been found in the fungal interaction (Maillet et al., 2011). Upon receiving diffusible signals from the microsymbionts, the plant roots initiate developmental programs that lead to infection by rhizobia or arbuscular mycorrhizal fungi. Both programs employ the same signaling pathway with several components being common to both mycorrhizal and rhizobial interactions (Kistner and Parniske, 2002; Lima et al., 2009). In particular, both the symbioses show characteristic perinuclear and nucleoplasmic localized calcium (Ca2+) oscillations, so-called Ca2+ spiking (Oldroyd and Downie, 2006; Sieberer et al., 2009). It has been suggested that Ca2+ is released from an internal store, most likely the nuclear lumen and associated endoplasmic reticulum (ER; Matzke et al., 2009), with targeted release in the nuclear region (Capoen et al., 2011).Genetic screens in the model legume Medicago truncatula have identified several genes that are required for the plant in the establishment of both symbioses. Two of these, Doesn’t Make Infections1 (DMI1) and DMI2, are essential for the induction of the Ca2+ oscillations, yet the precise roles and mechanisms of these components remain to be determined. DMI2 codes for a plasma membrane receptor-like kinase (Endre et al., 2002; Stracke et al., 2002) that is required to facilitate further signal transduction in the cell (Bersoult et al., 2005). DMI1 is a cation channel located preferentially on the inner nuclear envelope (Ané et al., 2004; Edwards et al., 2007; Riely et al., 2007; Charpentier et al., 2008; Capoen et al., 2011; Venkateshwaran et al., 2012). DMI3 encodes a calcium calmodulin-dependent protein kinase that interacts with downstream components and is thought to be the decoder of the Ca2+ oscillations (Lévy et al., 2004; Mitra et al., 2004; Hayashi et al., 2010). Additional genes coding for three nucleoporins called NUP85, NUP133, and NENA are also required for Ca2+ oscillations (Kanamori et al., 2006; Saito et al., 2007; Groth et al., 2010). The nuclear pore might be involved in trafficking secondary signals and/or ion channels to the inner nuclear membrane. These shared signaling components are collectively referred to as the common Sym pathway.DMI1 plays a key role in the production of Ca2+ oscillations, but its exact mechanism is still unknown. Orthologs of DMI1 have been found; in Lotus japonicus, they are called CASTOR and POLLUX (Charpentier et al., 2008), and in pea (Pisum sativum), SYM8 (Edwards et al., 2007). CASTOR and POLLUX, as well as calcium calmodulin-dependent protein kinase, are highly conserved both in legumes and nonlegumes (Banba et al., 2008; Chen et al., 2009). This highlights the essential role of the Ca2+ oscillations in mycorrhizal signaling.DMI1 is not the channel responsible for the release of Ca2+ (Charpentier et al., 2008; Parniske, 2008; Venkateshwaran et al., 2012) but probably influences the activity of Ca2+ channels. This is similar to how some K+ channels act in other plants and yeast (Peiter et al., 2007). Indeed, DMI1 is possibly a K+-permeable channel, based on the observation that POLLUX complements K+ transport in yeast (Charpentier et al., 2008). In symbiosis, the mode of action of DMI1 could be to allow cations into the nuclear envelope and in that way counterbalance the transmembrane charge that would occur following the release of Ca2+ into the nucleoplasm and cytoplasm. The cation channel could thus change the electrical potential across the nuclear membranes, affecting the opening of the voltage-activated Ca2+ channels (Edwards et al., 2007). This hypothesis is supported by a study reporting a membrane potential over the nuclear envelope in plants (Matzke and Matzke, 1986).Pharmacological evidence and the characteristics of the Ca2+ oscillations supports the involvement of Ca2+ pumps and Ca2+ channels (Engstrom et al., 2002). The pumps are needed to resequester Ca2+ after each release event, actively transporting Ca2+ against the concentration gradient using ATP. A recent study found a SERCA-type Ca2+ ATPase, MCA8, that is located on the inner and outer nuclear envelope of M. truncatula and is required for the symbiotic Ca2+ oscillations (Capoen et al., 2011). Such SERCA pumps are widely distributed on plant membranes, and the variation in their structure points to them being differentially regulated (Sze et al., 2000).Ca2+ channels release Ca2+ from the store, and the mechanism of activating these Ca2+ channels has been hypothesized to be voltage gated (Edwards et al., 2007; Oldroyd and Downie, 2008), but this remains to be verified experimentally. After release of Ca2+ into the cytosol and nucleoplasm, buffers quickly bind to and remove these free ions due to their toxicity to the cell (Sanders et al., 2002). Buffers, i.e. molecules that can bind Ca2+, may play an important role in determining the nonlinear behavior of the oscillatory system for Ca2+ signaling (Falcke, 2004). As numerous Ca2+ buffers are present in cells, it is important to take their contribution into account. Such buffers can also include experimentally introduced dyes and Ca2+ chelators.In Capoen et al. (2011), we investigated the establishment and transmission of spatial waves across the nuclear envelope and demonstrated that the key components for Ca2+ spiking reside on the inner and outer surface of the nuclear membrane. The computational framework we employed for this analysis makes a number of approximations in order to provide the computational efficiency required to perform spatiotemporal simulations. Here, a main focus is to understand the effect of buffers on the Ca2+ oscillations.In this article, we propose a mathematical model based on three key proteins; a Ca2+ ATPase, a voltage-gated Ca2+ channel, and the cation channel DMI1. The model reproduces the symbiotic Ca2+ oscillations, and we further demonstrate that Ca2+-binding proteins can explain initiation, termination, and experimentally observed variation in oscillation patterns. Furthermore, the model predicts that increases in buffering capacity can cause a period of rapid oscillations, and these were observed experimentally.  相似文献   

6.
7.
8.
9.
10.
When multiple mitogen-activated protein kinase (MAPK) components are recruited recurrently to transduce signals of different origins, and often opposing outcomes, mechanisms to enforce signaling specificity are of utmost importance. These mechanisms are largely uncharacterized in plant MAPK signaling networks. The Arabidopsis thaliana stomatal lineage was previously used to show that when rendered constitutively active, four MAPK kinases (MKKs), MKK4/5/7/9, are capable of perturbing stomatal development and that these kinases comprise two pairs, MKK4/5 and MKK7/9, with both overlapping and divergent functions. We characterized the contributions of specific structural domains of these four “stomatal” MKKs to MAPK signaling output and specificity both in vitro and in vivo within the three discrete cell types of the stomatal lineage. These results verify the influence of functional docking (D) domains of MKKs on MAPK signal output and identify novel regulatory functions for previously uncharacterized structures within the N termini of MKK4/5. Beyond this, we present a novel function of the D-domains of MKK7/9 in regulating the subcellular localization of these kinases. These results provide tools to broadly assess the extent to which these and additional motifs within MKKs function to regulate MAPK signal output throughout the plant.  相似文献   

11.
12.
13.
Plasmodesmata (Pd) are membranous channels that serve as a major conduit for cell-to-cell communication in plants. The Pd-associated β-1,3-glucanase (BG_pap) and CALLOSE BINDING PROTEIN1 (PDCB1) were identified as key regulators of Pd conductivity. Both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs) carrying a conserved GPI modification signal. However, the subcellular targeting mechanism of these proteins is unknown, particularly in the context of other GPI-APs not associated with Pd. Here, we conducted a comparative analysis of the subcellular targeting of the two Pd-resident and two unrelated non-Pd GPI-APs in Arabidopsis (Arabidopsis thaliana). We show that GPI modification is necessary and sufficient for delivering both BG_pap and PDCB1 to Pd. Moreover, the GPI modification signal from both Pd- and non-Pd GPI-APs is able to target a reporter protein to Pd, likely to plasma membrane microdomains enriched at Pd. As such, the GPI modification serves as a primary Pd sorting signal in plant cells. Interestingly, the ectodomain, a region that carries the functional domain in GPI-APs, in Pd-resident proteins further enhances Pd accumulation. However, in non-Pd GPI-APs, the ectodomain overrides the Pd targeting function of the GPI signal and determines a specific GPI-dependent non-Pd localization of these proteins at the plasma membrane and cell wall. Domain-swap analysis showed that the non-Pd localization is also dominant over the Pd-enhancing function mediated by a Pd ectodomain. In conclusion, our results indicate that segregation between Pd- and non-Pd GPI-APs occurs prior to Pd targeting, providing, to our knowledge, the first evidence of the mechanism of GPI-AP sorting in plants.Plant cells are interconnected with cross-wall membranous channels called plasmodesmata (Pd). Recent studies have shown that the region of the plasma membrane (PM) lining the Pd channel is a specialized membrane microdomain whose lipid and protein composition differs from the rest of the PM (Tilsner et al., 2011, 2016; Bayer et al., 2014; González-Solís et al., 2014; Grison et al., 2015). In a similar manner, the cell wall domain surrounding the Pd channel is specialized and, unlike the rest of the cell wall, is devoid of cellulose, rich in pectin, and contains callose (an insoluble β-1,3-glucan; Zavaliev et al., 2011; Knox and Benitez-Alfonso, 2014). In response to physiological signals, callose can be transiently deposited and degraded at Pd, which provides a mechanism for controlling the Pd aperture in diverse developmental and stress-related processes (Zavaliev et al., 2011). Control of Pd functioning is mediated by proteins that are specifically targeted to Pd. Plasmodesmal proteins localized to the PM domain of Pd can be integral transmembrane proteins, such as Pd-localized proteins (Thomas et al., 2008), the receptor kinase ARABIDOPSIS CRINKLY4 (Stahl et al., 2013), and callose synthases (Vatén et al., 2011). Alternatively, Pd proteins can associate with the membrane through a lipid modification like myristoylation (e.g. remorins; Raffaele et al., 2009) or be attached by a glycosylphosphatidylinositol (GPI) anchor (e.g. Pd-associated β-1,3-glucanases [BG_pap]; Levy et al., 2007; Rinne et al., 2011; Benitez-Alfonso et al., 2013), Pd-associated callose-binding proteins (PDCBs; Simpson et al., 2009), and LYSIN MOTIF DOMAIN-CONTAINING PROTEIN2 (LYM2; Faulkner et al., 2013).Among the known Pd proteins involved in Pd-specific callose degradation is BG_pap, a cell wall enzyme carrying a glycosyl hydrolase family 17 (GH17) module as its functional domain (Levy et al., 2007). Another group of proteins controlling callose dynamics at Pd are PDCBs that harbor a callose-binding domain termed carbohydrate-binding module 43 (CBM43), implicated in stabilizing callose at Pd (Simpson et al., 2009). Some β-1,3-glucanases may combine the two callose-modifying activities by harboring both GH17 and CBM43 functional domains, and several such proteins were shown to localize to Pd (Rinne et al., 2011; Benitez-Alfonso et al., 2013; Gaudioso-Pedraza and Benitez-Alfonso, 2014). A distinct feature of BG_pap and PDCBs is that both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs). The GPI anchor is a form of posttranslational modification common to many cell surface proteins in all eukaryotes. GPI-APs are covalently attached to the outer leaflet of the PM through the GPI anchor. The basic structure of the anchor consists of ethanolamine phosphate, followed by a glycan chain of three Man residues and glucosamine, followed by phosphatidylinositol lipid moiety (EtNP-6Manα1-2Manα1-6Manα1-4GlcNα1-6myoinositol-1-P-lipid; Ferguson et al., 2009). All predicted GPI-APs carry an N-terminal secretion signal peptide (SP) similar to other secreted proteins. Distinctly, GPI-APs also carry a structurally conserved 25- to 30-residue C-terminal GPI attachment signal, which typically begins with a small amino acid (e.g. Ala, Asn, Asp, Cys, Gly, or Ser) termed omega, followed by a spacer region of five to 10 polar residues, and ending with a transmembrane segment of 15 to 20 hydrophobic residues (Ferguson et al., 2009). The entire region between the N-terminal and the C-terminal signals of a GPI-AP is termed the ectodomain and carries the protein’s functional domain(s). The GPI modification process takes place in the lumenal face of the endoplasmic reticulum (ER) in a cotranslational manner. Upon translocation into the ER, a GPI-AP is stabilized in the ER membrane by its C-terminal signal, which is concurrently cleaved after the omega amino acid, and a preassembled GPI anchor is covalently attached to the C terminus of the omega amino acid. After attachment to a protein, the GPI anchor undergoes a series of modifications (remodeling), both at the glucan chain and at the lipid moiety. Such remodeling is crucial for the sorting of GPI-APs in the secretory pathway and the subsequent lateral heterogeneity at the PM (Kinoshita, 2015). In particular, the addition of saturated fatty acid chains to the lipid moiety of the anchor leads to the enriched accumulation of GPI-APs in the PM microdomains, also termed lipid rafts (Muñiz and Zurzolo, 2014). In Arabidopsis (Arabidopsis thaliana), GPI modification has been predicted for 210 proteins of diverse functions at the PM or the cell wall or both (Borner et al., 2002). Despite extensive research on the GPI modification pathway and the function of GPI-APs in mammalian and yeast cells, such knowledge in plant systems is scarce. In particular, despite an emerging role of GPI-APs in the regulation of the cell wall domain of Pd, their subcellular targeting and compartmentalization mechanism have not been studied. In addition, it is not known how the targeting mechanism of Pd-resident GPI-APs is different from that of other classes of GPI-APs, which are not localized to Pd.In this study, we investigated the subcellular targeting mechanism of Pd-associated callose-modifying GPI-APs, BG_pap and PDCB1, and compared it with that of two unrelated non-Pd GPI-APs, ARABINOGALACTAN PROTEIN4 (AGP4) and LIPID TRANSFER PROTEIN1 (LTPG1). Using sequential fluorescent labeling of protein domains, we found that the C-terminal GPI modification signal present in both Pd- and non-Pd GPI-APs can function as a primary signal in targeting proteins to the Pd-enriched PM domain. Moreover, we show that while the GPI signal is sufficient for Pd targeting, the ectodomains in BG_pap and PDCB1 further enhance their accumulation at Pd. In contrast, the ectodomains in non-Pd GPI-APs mediate exclusion of the proteins from the Pd-enriched targeting pathway. The Pd exclusion effect was found to be dominant over the Pd-targeting function of the GPI signal and the Pd-enhancing function of the Pd ectodomain, and it possibly occurs prior to PM localization. Our findings thus uncover a novel Pd-targeting signal and provide, to our knowledge, the first evidence of the cellular mechanism that regulates the sorting of GPI-APs in plants.  相似文献   

14.
The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)–associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCPO, to an active red form, OCPR. The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP’s photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCPR. A comparison of the spectroscopic properties of the RCP with OCPR indicates that critical protein–chromophore interactions within the C-terminal domain are weakened in the OCPR form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain.  相似文献   

15.
16.
In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA.  相似文献   

17.
Phytic acid (inositol hexakisphosphate [InsP6]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP6 contents during seed development. While the InsP6 content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP6 and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP6 and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.The transport of nutrients into developing seeds has received considerable attention. During the grain-filling stage, plants remobilize and transport nutrients distributed throughout the vegetative source organs into seeds. Plant seeds contain large amounts of phosphorus (P) in organic form, which supports growth during the early stages of seedling development. Most of the P in seeds is stored in the form of phytic acid (inositol hexakisphosphate [InsP6]). Seeds also accumulate mineral nutrients such as potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), which are used in seedling growth. Phytic acid acts as a strong chelator of metal cations and binds them to form phytate, a salt of InsP6 (Lott et al., 2002; Raboy, 2009). During germination, phytate is decationized and hydrolyzed by phytases, and then inorganic phosphates, inositol, and various minerals are released from the phytate (Loewus and Murthy, 2000). Phytate accumulates within protein bodies, generally of vacuolar origin, in seed storage cells and is usually concentrated in spherical inclusions called globoids. Many studies of the elemental composition of phytate in seeds have been published. Energy-dispersive x-ray microanalyses of many plant species have revealed that, other than P, globoids contain mainly K and Mg as well as low levels of Ca, Mn, Fe, and Zn (Lott, 1984; Lott et al., 1995; Wada and Lott, 1997). This indicates that phytate is a mixed salt of these cations.Whether all storage metal elements can bind equally to InsP6 is not known, although most elements are thought to exist in seeds in the form of phytate (Raboy, 2009). To form phytate, P and the other elements must be present in the same place. Therefore, determination of the precise locations of P and other elements in seed tissues makes it possible to judge whether an element exists in the form of phytate. Differences in metal distribution with P might suggest a storage form other than phytate. For determining distributions, synchrotron-based x-ray microfluorescence (µ-XRF) imaging utilizing an x-ray microbeam is a powerful tool. The microbeam excites the elements, thereby revealing the details of their spatial distribution. The development of focusing optics for high-energy x-rays using a Kirkpatrick-Baez mirror raises the imaging resolution of elements in µ-XRF analysis. A focal spot size smaller than 1 µm with x-ray energy as high as 100 keV enables detection of the subcellular distribution of elements in plant tissues (Fukuda et al., 2008; Takahashi et al., 2009).Whether there is an order in the affinity of elements for phytic acid in plant cells remains unknown. The stability of InsP6-metal complexes has been estimated by in vitro titration (Maddaiah et al., 1964; Vohra et al., 1965; Persson et al., 1998). The binding strength of InsP6 with metal is stronger for Zn and Cu than for Fe, Mn, and Ca. We also do not know if the mineral composition of phytate in seeds is determined by the relative abundance of these elements in the seed or by their biochemical characteristics. As a first step to address these issues, we examined the simultaneous changes in the distribution of P and metal elements during seed development using µ-XRF imaging analysis.Our objective in this study was to observe the dynamic changes in the distribution of some nutritionally important minerals (P, Ca, K, Fe, Zn, and Cu) in relation to the accumulation of phytic acid during rice (Oryza sativa) seed development.  相似文献   

18.
19.
20.
The transport of a viral genome from cell to cell is enabled by movement proteins (MPs) targeting the cell periphery to mediate the gating of plasmodesmata. Given their essential role in the development of viral infection, understanding the regulation of MPs is of great importance. Here, we show that cauliflower mosaic virus (CaMV) MP contains three tyrosine-based sorting signals that interact with an Arabidopsis (Arabidopsis thaliana) μA-adaptin subunit. Fluorophore-tagged MP is incorporated into vesicles labeled with the endocytic tracer N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide. The presence of at least one of the three endocytosis motifs is essential for internalization of the protein from the plasma membrane to early endosomes, for tubule formation, and for CaMV infection. In addition, we show that MP colocalizes in vesicles with the Rab GTPase AtRAB-F2b, which is resident in prevacuolar late endosomal compartments that deliver proteins to the vacuole for degradation. Altogether, these results demonstrate that CaMV MP traffics in the endocytic pathway and that virus viability depends on functional host endomembranes.Membrane trafficking is essential in eukaryotic cells. Cellular membranes serve as a delivery system for newly synthesized proteins such as transporters and receptors exiting the endoplasmic reticulum after proper folding. They then transit through the Golgi complex, reaching the plasma membrane (PM) or the tonoplast via intermediate endomembrane compartments. Receptors and transporters returning from the PM are either recycled or targeted to the vacuole for degradation. Delivery and recycling sorting pathways overlap in the trans-Golgi network (TGN)/early endosome (EE), an intermediate compartment for both exocytosis and endocytosis (Reyes et al., 2011). In plant systems, the endoplasmic reticulum and PM provide membrane continuity between cells through the connections made by plasmodesmata (PD), cytoplasmic channels that regulate traffic in the symplasm (Maule et al., 2011).The selective transport of macromolecules between different compartments of the endomembrane system is mediated by coat proteins promoting the generation of small cargo-trafficking coated vesicles (Spang, 2008). The recognition and recruitment of cargo proteins are mediated by so-called adaptor complexes (AP complexes [AP-1–AP-4]; Robinson, 2004) one of which, AP-1, is localized on the TGN/EE and endosomes, whereas AP-2 is in the PM. The μ-subunit of AP complexes is devoted to cargo protein selection via a specific and well-characterized interaction with a Tyr-sorting signal, YXXΦ, where Φ is a bulky hydrophobic residue and X is any amino acid (Bonifacino and Dell’Angelica, 1999). YXXΦ motifs are present in the cytoplasmic tail of many proteins integral to the PM and TGN/EE and have been found in the movement proteins (MPs) of some viruses (Laporte et al., 2003; Haupt et al., 2005). Plant viruses are obligate parasites that exploit host components to move within the cell and from cell to cell into the vascular system for systemic invasion of the host. Virus movement, which requires the passage of macromolecules through PD connections, is mediated by one or more virus-encoded MPs with the help of the host cytoskeleton and/or endomembranes (Harries et al., 2010). While most MPs act to increase the size exclusion limit of PD to facilitate the passage of the viral nucleoprotein complex, other MPs are assembled in tubules that pass inside highly modified PD and transport encapsidated particles through their lumen.Here, we focus on this second group of tubule-forming MPs and examine the intracellular trafficking of cauliflower mosaic virus (CaMV) MP. The MP encoded by CaMV forms tubules guiding encapsidated virus particle cell-to-cell transport via an indirect MP-virion interaction (Stavolone et al., 2005; Sánchez-Navarro et al., 2010). However, how CaMV MP (and the other tubule-forming MPs) targets the PM and forms tubules remains to be elucidated. Tubule-forming MPs do not require an intact cytoskeleton for PM targeting (Huang et al., 2000; Pouwels et al., 2002) and/or tubule formation (Laporte et al., 2003). However, suppression of tubule formation upon treatment with brefeldin A (BFA), a specific inhibitor of secretion or endocytosis, suggests the involvement of the endomembrane system in correct functioning of some tubule-forming MPs (Huang et al., 2000; Laporte et al., 2003). In this study, we examined the three Tyr-sorting motifs in CaMV MP and show that each of the three domains interacts directly with subunit μ of an Arabidopsis (Arabidopsis thaliana) AP complex. Mutations in these domains revert in the viral context to maintain CaMV viability. MP is found in endosomal compartments labeled by AtRAB-F2b (ARA7) and N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide (FM4-64). The presence of at least one functional YXXΦ domain is essential for the localization of MP to endosomes and for tubule assembly but is not required for MP targeting to the PM. We provide several lines of evidence to show CaMV MP trafficking in the endocytic pathway. Our findings are discussed in the light of the recent demonstration that the TGN/EE functions as a major hub controlling secretory and endocytic pathways in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号