共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Xenopus laevis frogs, sex differences in adult laryngeal synapses contribute to sex differences in vocal behavior. This study explores the development of sex differences in types of neuromuscular synapses and the development and hormone regulation of sex differences in transmitter release. Synapses in the juvenile larynx have characteristics not found in adults: juvenile muscle fibers can produce subthreshold or suprathreshold potentials in response to the same strength of nerve stimulation and can also produce multiple spikes to a single nerve stimulus. Juvenile laryngeal muscle also contains the same synapse types (I, II, and III) as are found in adult laryngeal muscle. The distribution of laryngeal synapse types in juveniles is less sexually dimorphic than the distribution in adults. Analysis of quantal content indicates that laryngeal synapses characteristically release low amounts of transmitter prior to sexual differentiation. Quantal content values from male and female juveniles are similar to values for adult males and are lower than values for adult females. When juveniles are gonadectomized and treated with exogenous estrogen, quantal content values increase significantly, suggesting that this hormone may increase transmitter release at laryngeal synapses during development. Gonadectomy alone does not affect quantal content of laryngeal synapses in either sex. Androgen treatment decreases quantal content in juvenile females but not males; the effect is opposite to and smaller than that of estrogen. Thus, muscle fiber responses to nerve stimulation and transmitter release are not sexually dimorphic in juvenile larynges. Transmitter release is strengthened, or feminized, by the administration of estradiol, an ovarian steroid hormone. © 1995 John Wiley & Sons, Inc. 相似文献
3.
SHANK1 is differentially expressed during development in CA1 hippocampal neurons and astrocytes 下载免费PDF全文
Sean M. Collins Amogh P. Belagodu Samantha L. Reed Roberto Galvez 《Developmental neurobiology》2018,78(4):363-373
Recent studies have strongly suggested a role for the synaptic scaffolding protein SHANK1 in normal synaptic structure and signaling. Global SHANK1 knockout (SHANK1?/?) mice demonstrate reduced dendritic spine density, an immature dendritic spine phenotype and impairments in various cognitive tasks. SHANK1 overexpression is associated with increased dendritic spine size and impairments in fear conditioning. These studies suggest proper regulation of SHANK1 is crucial for appropriate synaptic structure and cognition. However, little is known regarding SHANK1's developmental expression in brain regions critical for learning. The current study quantified cell specific developmental expression of SHANK1 in the hippocampus, a brain region critically involved in various learning paradigms shown to be disrupted by SHANK1 dysregulation. Consistent with prior studies, SHANK1 was found to be strongly co‐expressed with dendritic markers, with significant increased co‐expression at postnatal day (P) 15, an age associated with increased synaptogenesis in the hippocampus. Interestingly, SHANK1 was also found to be expressed in astrocytes and microglia. To our knowledge, this is the first demonstration of glial SHANK1 localization; therefore, these findings were further examined via a glial purified primary cell culture fraction using magnetic cell sorting. This additional analysis further demonstrated that SHANK1 was expressed in glial cells, supporting our immunofluorescence co‐expression findings. Developmentally, astroglial SHANK1 co‐expression was found to be significantly elevated at P5 with a reduction into adulthood, while SHANK1 microglial co‐expression did not significantly change across development. These data collectively implicate a more global role for SHANK1 in mediating normal cellular signaling in the brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 363–373, 2018 相似文献
4.
5.
6.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
7.
8.
9.
Anabel Herr Lisa Mckenzie Randy Suryadinata Linda M. Parsons Helena E. Richardson 《Developmental biology》2010,344(1):36-51
Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm-BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR-Ras-MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR-Ras-MAPK signaling pathway, by affecting Mek levels during Drosophila development. 相似文献
10.
Kunie Sakurai Manabu Toyoshima Hidehiro Ueda Kota Matsubara Yasuo Takeda Domna Karagogeos Yasushi Shimoda Kazutada Watanabe 《Developmental neurobiology》2009,69(12):811-824
The neural cell recognition molecule NB‐3, also referred to as contactin‐6, is expressed prominently in the developing nervous system after birth and its deficiency has been shown to cause impairment in motor coordination. Here, we investigated the contribution of NB‐3 to cerebellar development, focusing on lobule 3 where NB‐3 was expressed in granule cells but not in Purkinje cells. In the developing molecular layer, the neural cell recognition molecules TAG‐1, L1, and NB‐3 formed distinct expression zones from the external granule cell layer to the internal granule cell layer (IGL), respectively. The NB‐3‐immunoreactive zone did not overlap with TAG‐1‐immunoreactive zone. By contrast, the L1‐immunoreactive zone overlapped with both the TAG‐1‐ and NB‐3‐immunoreactive zones. NB‐3‐positive puncta overlapped with vesicular glutamate transporter 1, a presynaptic marker and were apposed close to metabotropic glutamate receptor 1A, a postsynaptic marker, indicating that NB‐3 is localized presynaptically at glutamatergic synapses between parallel fibers and Purkinje cells. In NB‐3 knockout mice, L1 immunoreactive signals were increased in the IGL at postnatal day (P) 5, suggesting the increase in the number of immature granule cells of the IGL. In addition, the density of parallel fiber synaptic terminals was reduced in NB‐3 knockout mice relative to wild‐type mice at P5 to P10. In parallel with these findings, caspase‐dependent cell death was significantly increased in the NB‐ 3‐deficient cerebellum at P15. Collectively, our results indicate that NB‐3 deficiency affects synapse formation during postnatal cerebellar development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 相似文献
11.
Jon M. Karpilow Angel C. Pimentel Hoda K. Shamloula Tadmiri R. Venkatesh 《Developmental neurobiology》1996,31(2):149-165
The compound eye of Drosophila is a reiterated pattern of 800 unit eyes known as ommatidia. In each ommatidium there are eight photoreceptor neurons (R1–R8) and an invariant number of accessory cells organized in a precise manner. In the developing eye, specification of cell fates is triggered by sequential inductive events mediated by cell-cell interactions. The R8 photoreceptor neuron is the first cell to differentiate and is thought to play a central role in the recruitment of the remaining photoreceptor cells. Our previous work demonstrated that mutations in the retina aberrant in pattern (rap) locus lead to abnormal pattern formation in the compound eye. Genetic mosaic experiments demonstrated that for normal retinal patterning to occur, rap gene function is required only in the photoreceptor cell R8. In this study we analyzed the R cell composition of developing as well as the adult eyes of rap mutants employing a variety of R cell specific markers. We show that in rap mutants, although some of the R8-specific markers show normal expression patterns, other aspects of the R8 cell differentiation are abnormal. In addition, the cells R1, R6, and R7 fail to differentiate properly in rap mutants. These results suggest that the rap gene encodes an R8-specific function that plays a role in the determination of the photoreceptor cells R1, R6, and R7. © 1996 John Wiley & Sons, Inc. 相似文献
12.
Reversing neural circuit and behavior deficit in mice exposed to maternal inflammation by Zika virus
Li Ma Jing Wang Jianlong Ge Yuan Wang Wei Zhang Yuanning Du Jun Luo Yangping Li Feng Wang Guoping Fan Rong Chen Bing Yao Zhen Zhao MingLei Guo WoongKi Kim Yang Chai JianFu Chen 《EMBO reports》2021,22(8)
Zika virus (ZIKV) infection during pregnancy is linked to various developmental brain disorders. Infants who are asymptomatic at birth might have postnatal neurocognitive complications. However, animal models recapitulating these neurocognitive phenotypes are lacking, and the circuit mechanism underlying behavioral abnormalities is unknown. Here, we show that ZIKV infection during mouse pregnancy induces maternal immune activation (MIA) and leads to autistic‐like behaviors including repetitive self‐grooming and impaired social memory in offspring. In the medial prefrontal cortex (mPFC), ZIKV‐affected offspring mice exhibit excitation and inhibition imbalance and increased cortical activity. This could be explained by dysregulation of inhibitory neurons and synapses, and elevated neural activity input from mPFC‐projecting ventral hippocampus (vHIP) neurons. We find structure alterations in the synaptic connections and pattern of vHIP innervation of mPFC neurons, leading to hyperconnectivity of the vHIP‐mPFC pathway. Decreasing the activity of mPFC‐projecting vHIP neurons with a chemogenetic strategy rescues social memory deficits in ZIKV offspring mice. Our studies reveal a hyperconnectivity of vHIP to mPFC projection driving social memory deficits in mice exposed to maternal inflammation by ZIKV. 相似文献
13.
Luminita Stoenica Wiebke Wilkars Arne Battefeld Konstantin Stadler Roland Bender Ulf Strauss 《Developmental neurobiology》2013,73(10):785-797
The distribution of ion channels in neurons regulates neuronal activity and proper formation of neuronal networks during neuronal development. One of the channels is the hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channel constituting the molecular substrate of hyperpolarization‐activated current (Ih). Our previous study implied a role for the fastest activating subunit HCN1 in the generation of Ih in rat neonatal cortical plate neurons. To better understand the impact of HCN1 in early neocortical development, we here performed biochemical analysis and whole‐cell recordings in neonatal cortical plate and juvenile layer 5 somatosensory neurons of HCN1?/? and control HCN1+/+ mice. Western Blot analysis revealed that HCN1 protein expression in neonatal cortical plate tissue of HCN+/+ mice amounted to only 3% of the HCN1 in young adult cortex and suggested that in HCN1?/? mice other isoforms (particularly HCN4) might be compensatory up‐regulated. At the first day after birth, functional ablation of the HCN1 subunit did not affect the proportion of Ih expressing pyramidal cortical plate neurons. Although the contribution of individual subunit proteins remains open, the lack of HCN1 markedly slowed the current activation and deactivation in individual Ih expressing neurons. However, it did not impair maximal amplitude/density, voltage dependence of activation, and cAMP sensitivity. In conclusion, our data imply that, although expression is relatively low, HCN1 contributes substantially to Ih properties in individual cortical plate neurons. These properties are significantly changed in HCN1?/?, either due to the lack of HCN1 itself or due to compensatory mechanisms. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 785–797, 2013 相似文献
14.
Bin Wang Ruiqiu Fang Faming Chen Jingluan Han Yao‐Guang Liu Letian Chen Qinlong Zhu 《植物学报(英文版)》2020,62(10):1594-1606
Male sterility is a prerequisite for hybrid seed production. The phytohormone gibberellin (GA) is involved in regulating male reproductive development, but the mechanism underlying GA homeostasis in anther development remains less understood. Here, we report the isolation and characterization of a new positive regulator of GA homeostasis, swollen anther wall 1 (SAW1), for anther development in rice (Oryza sativa L.). Rice plants carrying the recessive mutant allele saw1 produces abnormal anthers with swollen anther wall and aborted pollen. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRIPSR‐associated protein 9‐mediated knockout of SAW1 in rice generated similar male sterile plants. SAW1 encodes a novel nucleus‐localizing CCCH‐tandem zinc finger protein, and this protein could directly bind to the promoter region of the GA synthesis gene OsGA20ox3 to induce its anther‐specific expression. In the saw1 anther, the significantly decreased OsGA20ox3 expression resulted in lower bioactive GA content, which in turn caused the lower expression of the GA‐inducible anther‐regulator gene OsGAMYB. Thus, our results disclose the mechanism of the SAW1‐GA20ox3‐GAMYB pathway in controlling rice anther development, and provide a new target gene for the rapid generation of male sterile lines by genome editing for hybrid breeding. 相似文献
15.
dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult‐specific muscle targets and function in Drosophila eclosion 下载免费PDF全文
Soumya Banerjee Marcus Toral Matthew Siefert David Conway Meredith Dorr Joyce Fernandes 《Developmental neurobiology》2016,76(12):1387-1416
The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post‐eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2–A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387–1416, 2016 相似文献
16.
M. Lutter 《Genes, Brain & Behavior》2013,12(6):658-665
While it is known that mice lacking melanocortin 4 receptor (MC4R) expression develop hyperphagia resulting in early‐onset obesity, the specific neural circuits that mediate this process remain unclear. Here, we report that selective restoration of MC4R expression within dopamine‐1 receptor‐expressing neurons [MC4R/dopamine 1 receptor (D1R) mice] partially blunts the severe obesity seen in MC4R‐null mice by decreasing meal size, but not meal frequency, in the dark cycle. We also report that both acute cocaine‐induced anorexia and the development of locomotor sensitization to repeated administration of cocaine are blunted in MC4R‐null mice and normalized in MC4R/D1R mice. Neuronal retrograde tracing identifies the lateral hypothalamic area as the primary target of MC4R‐expressing neurons in the nucleus accumbens. Biochemical studies in the ventral striatum show that phosphorylation of DARPP‐32Thr‐34 and GluR1Ser‐845 is diminished in MC4R‐null mice after chronic cocaine administration but rescued in MC4R/D1R mice. These findings highlight a physiological role of MC4R‐mediated signaling within D1R neurons in the long‐term regulation of energy balance and behavioral responses to cocaine. 相似文献
17.
18.
Constitutive activation of the MTOR pathway is a key feature of defects in the tuberous sclerosis complex and other genetic neurodevelopmental diseases, collectively referred to as MTORopathies. MTORC1 hyperactivity promotes anabolic cell functions such as protein synthesis, yet at the same time catabolic processes such as macroautophagy/autophagy are suppressed. Mitochondria are major substrates of autophagy; however, their role in MTORopathies remains largely undefined. Here, we review our recent study showing that several aspects of mitochondrial function, dynamics and turnover are critically impaired in neuronal models of TSC. We discuss the relevance of these findings to neurological manifestations associated with TSC and speculate on autophagy as a novel treatment target for MTORopathies. 相似文献
19.
Andrew J. Fritz Deli Hong Joseph Boyd Jason Kost Kristiaan H. Finstaad Mark P. Fitzgerald Sebastian Hanna Alqassem H. Abuarqoub Miles Malik John Bushweller Coralee Tye Prachi Ghule Jonathan Gordon Seth Frietze Sayyed K. Zaidi Jane B. Lian Janet L. Stein Gary S. Stein 《Journal of cellular physiology》2020,235(10):7261-7272
Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24−/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFβ1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24−/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFβ for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence. 相似文献