首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensory forebrain is composed of intricately connected cell types, of which functional properties have yet to be fully elucidated. Understanding the interactions of these forebrain circuits has been aided recently by the development of optogenetic methods for light-mediated modulation of neuronal activity. Here, we describe a protocol for examining the functional organization of forebrain circuits in vitro using laser-scanning photostimulation of channelrhodopsin, expressed optogenetically via viral-mediated transfection. This approach also exploits the utility of cre-lox recombination in transgenic mice to target expression in specific neuronal cell types. Following transfection, neurons are physiologically recorded in slice preparations using whole-cell patch clamp to measure their evoked responses to laser-scanning photostimulation of channelrhodopsin expressing fibers. This approach enables an assessment of functional topography and synaptic properties. Morphological correlates can be obtained by imaging the neuroanatomical expression of channelrhodopsin expressing fibers using confocal microscopy of the live slice or post-fixed tissue. These methods enable functional investigations of forebrain circuits that expand upon more conventional approaches.  相似文献   

2.
3.
One of the main challenges of modern biochemistry and cell biology is to be able to observe molecular dynamics in their functional context, i.e. in live cells in situ. Thus, being able to track ongoing molecular events with maximal spatial and temporal resolution (within subcellular compartments), while minimizing interference with tissue biology, is key to future developments for in situ imaging. The recent use of non-linear optics approaches in tissue microscopy, made possible in large part by the availability of femtosecond pulse lasers, has allowed major advances on this front that would not have been possible with conventional linear microscopy techniques. Of these approaches, the one that has generated most advances to date is two-photon laser scanning fluorescence microscopy. While this approach does not really provide improved resolution over linear microscopy in non absorbing media, it allows us to exploit a window of low absorbance in live tissue in the near infrared range. The end result is much improved tissue penetration, minimizing unwanted excitation outside the focal area, which yields an effective improvement in resolution and sensitivity. The optical system is also simplified and, more importantly, phototoxicity is reduced. These advantages are at the source of the success of two-photon microscopy for functional cellular imaging in situ. Yet, we still face further challenges, reaching the limits of resolution that conventional optics can offer. Here we review some recent advances in optics/photonics approaches that hold promises to improve our ability to probe the tissue in finer areas, at faster speed, and deeper into the tissue. These include super-resolution techniques, introduction of non paraxial optics in microscopy and use of amplified femtosecond lasers, yielding enhanced spatial and temporal resolution as well as tissue penetration.  相似文献   

4.
Women with endometriosis (EMs) have unexplained infertility. The recently identified telocytes (TCs) might participate in the maintenance of structural and functional integrity of oviduct tissue, but so far the involvement of TCs in EMs‐affected oviduct tissue and potential impact on fertility capacity remain unknown. By an integrated technique of haematoxylin and eosin staining, in situ immunohistochemistry and double‐labelled immunofluorescence staining and electron microscopy approach, TCs were studied in the autotransplantation Sprague–Dawley rat model of EMs‐affected oviduct tissue and in sham control, respectively, together with determination of iNOS, COX‐2, LPO and estradiol. TCs were found in perivascular connective tissue and smooth muscle bundles in sham oviduct, with typical ultrastructural features (a slender piriform/spindle/triangular cell body, and one or more extremely long prolongations, emerged from cell bodies and extend to various directions), and specific immunophenotype of CD34‐positive/vimentin‐positive/c‐kit‐negative. However, in EMs‐affected oviduct tissue (grade III), extensive ultrastructural damage (degeneration, discontinue, dissolution and destruction), significant decrease or loss of TCs and interstitial fibrosis were observed, together with elevated level of iNOS, COX‐2, LPO and estradiol, thus suggestive of inflammation and ischaemia‐induced TCs damage. Based on TCs distribution and intercellular connections, we proposed that such damage might be involved in structural and functional abnormalities of oviduct, such as attenuated intercellular signalling and oviduct contractility, impaired immunoregulation and stem cell‐mediated tissue repair, 3‐D interstitial architectural derangement and tissue fibrosis. Therefore, TCs damage might provide a new explanation and potential target for EMs‐induced tubal damage and fertility disorders.  相似文献   

5.
6.
The mesocarp tissue of ripening avocado fruits was studied byfreeze fracture, thin section and scanning electron microscopy.Carbon dioxide and ethylene production by individual fruit weremonitored, and samples were analysed at several stages of theripening process. The tissue is composed primarily of large, isodiametric, lipid-containingparenchyma cells. At maturity these cells contain the normalcomplement of cell organelles, and all membranes appear intact.When ripening begins, several changes in the ultrastructureoccur. The most obvious changes are a loosening and eventualbreakdown of the cell wall, and swelling and vesiculation ofthe rough endoplasmic reticulum. In freeze fracture replicasa significant increase in the number of intramembranous particlesin the EF face of the plasmamembrane was observed at the climactericpeak. In post-climacteric, soft fruit the particle density of theEF face of the plasmamembrane decreased to the density observedin the membrane of pre-climacteric cells. All of the organellesand membranes appear whole and intact whether examined by thinsection, freeze fracture or scanning electron microscopy. However,the cell walls in post-climacteric fruit have almost completelydisappeared. These results indicated that the ripening process per se inavocados does not involve a complete loss of compartmentationnor a breakdown of organelle and membrane integrity. It may,however, lead to these or similar senescence changes as a resultof the loss of the cell walls. The variations in particle densityof the plasmamembrane during ripening may reflect one or moreof several structural, compositional, or functional membranephenomena, and this aspect of ripening warrants further study. Persea americana Mill., avocado pear, freeze fracture, fruit ripening, scanning electron microscopy, senescence, ultrastructure  相似文献   

7.
Cytopathology of viroid-infected plant tissue II. Light- and electron microscopical investigations on the leaf tissue of the Chrysanthemum morifolium cultivar “Mistletoe” after infection with the chrysanthemum stunt viroid (CSV) The infection of the Chrysanthemum morifolium cultivar “Mistletoe” with the chrysanthemum stunt viroid (CSV) leads to the appearance of numerous yellowish leaf spots 2–5 mm in diameter. The cells of these chlorotic leaf areas were investigated by phase contrast- and electron microscopy and compared with the cells of the adjacent green tissue and the tissue of healthy plants. Phase contrast microscopy showed that the chlorotic tissue containes about 50 % more cells per area and that their size is reduced by 30–60 %. The parenchymatic cells of the xylem and phloem are irregular and their walls are malformed. In these cells the chloroplasts are reduced to about half in their size and number. In the electron microscope an accumulation of osmiophilic material between the thylakoid membranes of the chloroplasts of the chlorotic cells and a deterioration of the chloroplast stroma can be observed. Moreover, malformations of the cell wall and in the cell wall-associated plasmalemma-somes are found, which lead to an increase in contrast and to irregularities of their surface and internal structure. The most prominent CSV-specific cytopathic effect in cells of the vascular tissue is the extreme accumulation of microfilament bundles which were analysed in detail with the aid of a goniometer. The observed viroid-induced ultrastructural changes are compared with previously described changes caused by conventional plant viruses and the possible functional implications are discussed.  相似文献   

8.
Based on previous observations in tissue culture, we investigated pinocytotic activity as a potential cell marker for brain microglia. This functional activity was assessed in three different preparations derived from rat: primary cultures of mixed cerebral cortical cells, tissue slabs of whole cerebrum, and cultures of isolated or enriched microglial cells. Each preparation was incubated with the fluorescent dye lucifer yellow as a soluble tracer and then processed for light microscopy. Under the conditions utilized, ramified microglia specifically exhibited differentially high pinocytotic labeling in all cases; the dye was mainly localized within the cell somata, where it was sequestered in pinocytotic vesicles. In each preparation, the identity of the labeled cell population was confirmed as microglia through immunohistochemical staining with the monoclonal antibody (MAb) OX-42, a specific microglial marker. Therefore, pinocytotic labeling is proposed as a select cell marker for microglia, which may be extremely useful in the identification and study of ramified microglial cells.  相似文献   

9.
Skeletal muscle tissue is highly susceptible to sustained compressive straining, eventually leading to tissue breakdown in the form of pressure sores. This breakdown begins at the cellular level and is believed to be triggered by sustained cell deformation. To study the relationship between compressive strain-induced muscle cell deformation and damage, and to investigate the role of cell-cell interactions, cell-matrix interactions and tissue geometry in this process, in vitro models of single cells, monolayers and 3D tissue analogs under compression are being developed. Compression is induced using specially designed loading devices, while cell deformation is visualised with confocal microscopy. Cell damage is assessed from viability tests, vital microscopy and histological or biochemical analyses. Preliminary results from a 3D cell seeded agarose model indicate that cell deformation is indeed an important trigger for cell damage; sustained compression of the model at 20% strain results in a significant increase in cell damage with time of compression, whereas damage in unstrained controls remains constant over time.  相似文献   

10.
Hypertrophic “light” and “dark” chondrocytes have been reported as morphologically distinct cell types in growth cartilage during endochondral ossification in many species, but functional differences between the two cell types have not been described. The aim of the current study was to develop a pellet culture system using chondrocytes isolated from epiphyseal cartilage of neonatal mice and rats, for the study of functional differences between these two cell types. Hypertrophic chondrocytes resembling those described in vivo were observed by light and electron microscopy in sections of pellets treated with triiodothyronine, 1% fetal calf or mouse serum, 10% fetal calf serum or 1.7 MPa centrifugal pressure at day 14, and in pellets cultured with insulin or 0.1% fetal calf or mouse serum at day 21. A mixed population of light and dark chondrocytes was found in all conditions leading to induction of chondrocyte hypertrophy. This rodent culture system allows the differentiation of light and dark chondrocytes under various conditions in vitro and will be useful for future studies on tissue engineering and mechanisms of chondrocyte hypertrophy.  相似文献   

11.
The objective of this research was to study the mechanisms of opening of the blood?Cprostate barrier and increased permeability of prostate tissue induced by microbubble cavitation. Thirty-five rabbits were randomly divided into four study groups: (1) control group and groups exposed to (2) microbubble alone, (3) ultrasound alone, or (4) combined intervention (ultrasound?+?microbubble group). Evans blue (EB) tracer was used to gauge the changes of permeability of prostate tissue. Furthermore, light and electron microscopy analyses were conducted, as well as the western blot analysis of expression of gap junction (Cx43) protein. We observed that EB concentration in prostate tissue was significantly greater in the ultrasound?+?microbubble group compared with either intervention alone (p?<?0.05, both comparisons). Furthermore, light microscopy of tissue samples from animals exposed to ultrasound?+?microbubble showed epithelial cell disarrangement, loss of interstitial structure, and thickness of fibrous stroma. In line with these findings, electron microscopy analysis demonstrated widening of cell gaps and broken cell connections, as well as more dense lysosomes and secretary granules, and mitochondrial swelling. These changes were absent in the animals exposed to microbubble or ultrasound alone. Finally, only combined treatment with microbubble or ultrasound significantly elevated expression of Cx43 (p?<?0.05 vs. control group). In conclusion, increases of permeability of prostate tissue by acoustic cavitation appear to involve opening of tight junctions, widening of intracellular spaces, changes in the structure of acinar cell membrane, enhancement of vesicular transport, and loosening of fibrous stroma. Increased expression of cell gap junction protein will help to restore normal connections between cells and the blood?Cprostate barrier after the treatment.  相似文献   

12.
Soft tissues, such as tendons, skin, arteries, or lung, are constantly subject to mechanical stresses in vivo. None more so than the aortic heart valve that experiences an array of forces including shear stress, cyclic pressure, strain, and flexion. Anisotropic biaxial cyclic stretch maintains valve homeostasis; however, abnormal forces are implicated in disease progression. The response of the valve endothelium to deviations from physiological levels has not been fully characterized. Here, we show the design and validation of a novel stretch apparatus capable of applying biaxial stretch to viable heart valve tissue, while simultaneously allowing for live en face endothelial cell imaging via confocal laser scanning microscopy (CLSM). Real-time imaging of tissue is possible while undergoing highly characterized mechanical conditions and maintaining the native extracellular matrix. Thus, it provides significant advantages over traditional cell culture or in vivo animal models. Planar biaxial tissue stretching with simultaneous live cell imaging could prove useful in studying the mechanobiology of any soft tissue.  相似文献   

13.
The thallus of the lichen Ramalina menziesii Tayl. is composed of net-like units that develop by diffuse expansion of perforated tissue produced at the net apex. Study of net tissue with transmission electron microscopy reveals that the cortical cells are surrounded by a succession of cell walls alternating with layers of an electron-transparent matrix substance. In the course of thallus growth the cortical cell walls are continually deformed and new ones constructed. The deposition of new walls and matrix layers displaces the older walls centrifugally from the cell. Electron-dense boundaries develop at the interfaces among cells where the remains of the oldest walls are compressed against those of neighboring cells. As new branch cells are inserted through the concentric accumulations, the dense boundaries appear to enclose fascicles of cells, visible in cross section with light microscopy. Cortical organization in Ramalina menziesii is contrasted with that reported in other lichens, and a functional relationship to diffuse growth of the thallus is suggested.  相似文献   

14.
Erfle H  Simpson JC  Bastiaens PI  Pepperkok R 《BioTechniques》2004,37(3):454-8, 460, 462
RNA interference (RNAi) is a recent advance that provides the possibility to reduce the expression of specific target genes in cultured mammalian cells with potential applications on a genome-wide scale. However, to achieve this, robust methodologies that allow automated and efficient delivery of small interfering RNAs (siRNAs) into living cultured cells and reliable quality control of siRNA function must be in place. Here we describe the production of cell arrays for reverse transfection of tissue culture cells with siRNA and plasmid DNA suitable for subsequent high-content screening microscopy applications. All the necessary transfection components are mixed prior to the robotic spotting on noncoated chambered coverglass tissue culture dishes, which are ideally suited for time-lapse microscopy applications in living cells. The addition of fibronectin to the spotting solution improves cell adherence. After cell seeding, no further cell culture manipulations, such as medium changes or the addition of 7 serum, are needed. Adaptation of the cell density improves autofocus performance for high-quality data acquisition and cell recognition. The co-transfection of a nonspecific fluorescently labeled DNA oligomer with the specific siRNA helps to mark each successfully transfected cell and cell cluster. We demonstrate such an siRNA cell array in a microscope-based functional assay in living cells to determine the effect of various siRNA oligonucleotides against endogenous targets on cellular secretion.  相似文献   

15.
Electrospun natural polymer membranes were fabricated from collagen or gelatin coated with a bioactive recombinant fragment of perlecan, a natural heparan sulfate proteoglycan. The electrospinning process allowed the facile processing of a three-dimensional, porous fibril (2-6 microm in diameter) matrix suitable for tissue engineering. Laser scanning confocal microscopy revealed that osteoblast-like MG63 cells infiltrated the depth of the electrospun membrane evenly without visible apoptosis. Tissue engineering scaffolds ideally mimic the extracellular matrix; therefore, the electrospun membrane must contain both structural and functional matrix features. Fibers were coated, after processing, with perlecan domain I (PlnDI) to improve binding of basic fibroblast growth factor (FGF-2), which binds to native heparan sulfate chains on PlnDI. PlnDI-coated electrospun collagen fibers were ten times more effective than heparin-BSA collagen fibers at binding FGF-2. Because FGF-2 modulates cell growth, differentiation, migration and survival, the ability to effectively bind FGF-2 to an electrospun matrix is a key improvement in creating a successful tissue engineering scaffold.  相似文献   

16.
There remain major gaps in our knowledge regarding the detailed mechanisms by which autoantibodies mediate damage at the tissue level. We have undertaken novel strategies at the interface of engineering and clinical medicine to integrate nanoscale visual and structural data using nanorobotic atomic force microscopy with cell functional analyses to reveal previously unattainable details of autoimmune processes in real-time. Pemphigus vulgaris is a life-threatening autoimmune blistering skin condition in which there is disruption of desmosomal cell-cell adhesion structures that are associated with the presence of antibodies directed against specific epithelial proteins including Desmoglein (Dsg) 3. We demonstrate that pathogenic (blister-forming) anti-Dsg3 antibodies, distinct from non-pathogenic (non-blister forming) anti-Dsg3 antibodies, alter the structural and functional properties of keratinocytes in two sequential steps - an initial loss of cell adhesion and a later induction of apoptosis-related signaling pathways, but not full apoptotic cell death. We propose a “2-Hit” model for autoimmune disruption associated with skin-specific pathogenic autoantibodies. These data provide unprecedented details of autoimmune processes at the tissue level and offer a novel conceptual framework for understanding the action of self-reactive antibodies.  相似文献   

17.
The study was undertaken to investigate the possible correlation of total volume of mitochondria per cell with the rate of succinate oxidation in isolated nerve cell bodies, after various functional stresses in the experimental animals. Significant cytological effects were found in the nerve cells of the supraoptic nucleus in rats which had been thirsting for 4–12 days or had been given 2% sodium chloride solution as a substitute for drinking water for a few weeks. Quantitation of mitochondria was done from electron micrographs. The cell volumes were calculated from sections of Epon-embedded tissue under phase-contrast microscopy. Succinate oxidation was measured on groups of 10 nerve cells with the microdiver technique. As a result of either thirst or sodium chloride load, the volume of mitochondria per nerve cell more than doubled. The rate of succinate oxidation was not changed after the rats had been thirsting but was enhanced by over 100% after they had drunk sodium chloride. A linear relationship was found for the amount of mitochondria versus respiration in the supraoptic neurons for all experimental groups except the thirsting animals. The mitochondria in the supraoptic neurons from thirsting animals were of the same size or smaller than those in controls, whereas in animals given sodium chloride solution the mitochondria were considerably enlarged. The observed effects were specific for the supraoptic nucleus.  相似文献   

18.
Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) environment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.  相似文献   

19.
Primary cell transplantation is currently the gold standard for cell replacement in Parkinson’s disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM) donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1) an intact piece of half an embryonic day 13 (E13) rat VM; (2) dissociated cells from half an E13 rat VM; or (3) no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson’s disease.  相似文献   

20.
Summary To obtain more accurate information on the nephron-collecting duct system, monoclonal antibodies against renal tissue were prepared. BALB/c mice were immunized every two weeks with rat renal tissue, either cortex or medulla. Spleen cells were collected and fused with myeloma cells sensitive to hypoxanthine-aminopterin-thymidine medium. Hybrids were selected for production of antibodies by indirect immunofluorescence and cloned by the limiting dilution method. Tissue reactivity of the antibodies obtained was defined by immunofluorescence. The intracellular localization of antigenic determinants was ascertained by immunoelectron microscopy. The antibodies were classified into four major groups: (1) antibodies against proximal tubules; (2) antibodies against distal tubules and the loop of Henle; (3) antibodies against collecting duct system; and (4) antibodies against glomeruli. Using immunoelectron microscopy, various intracellular antigenic determinants were recognized, such as brush border, apical canaliculi, vacuolar apparatus, luminal and basolateral plasma membranes. The results obtained indicated that electron microscopy is indispensable for the immunohistological study of the nephroncollecting duct system. The observations help to understand morphological and functional diversity of the nephron-collecting duct system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号