首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
An important approach to generalizing across different taxa and systems is to focus on functional traits rather taxonomic identity. However, this approach assumes, usually implicitly, that the same value of the same trait will have the same effect in all taxa. This assumption is probably never true in the strictest sense, but it is less clear to what extent even the direction and shape of trait–performance relationship are consistent among taxa. Wildova et al. (Oikos 116:836–852, 2007) addressed this question by manipulating traits in a highly calibrated model of clonal plants, parameterized for six sedge species. They found traits connected to growth and allocation were largely consistent in their performance effects across taxa, while morphological and architectural traits were much more contingent. This result suggests that traits not directly related to resource acquisition and use should show much less consistent patterns across systems and be less susceptible to ecological generalizations.  相似文献   

2.
Clonal plants grow in diameter rather than height, and therefore competition among genets is likely to be symmetric and to result in smaller variation in size of genets than in non-clonal plants. Moreover, clonal plants can reproduce both sexually and vegetatively. We studied the effects of density on the size of rosettes and of clones, variation in the size of rosettes and of clones, and allocation to sexual and vegetative reproduction in the clonal herb Ranunculus reptans . We grew plants from an artificial population of R. reptans in 32 trays at two densities. After four months, differences in density were still apparent, although clones in the low-density treatment had on average 155% more rosettes and 227% more rooted rosettes than clones in the high-density treatment. The coefficient of variation of these measures of clone size was 15% and 83% higher, respectively, in the low-density treatment. This indicates that intraspecific competition among clones of R. reptans is symmetric and increases the effective population size. Rooted rosettes were larger and varied more in size in the low-density treatment. The relative allocation of the populations to sexual and to vegetative reproduction was 19% and 13% higher, respectively, in the high-density treatment. Moreover, seeds produced in the high-density treatment had a 24% higher mass and a 7% higher germination percentage. This suggests that with increasing density, allocation to sexual reproduction increases more than allocation to vegetative reproduction in R. reptans , which corresponds to the response of some other species with a spreading growth form but not of species with a compact growth form. We conclude that intraspecific competition is an important factor in the life-history evolution of R. reptans because intraspecific competition affects its clonal life-history traits and may affect evolutionary processes such as genetic drift and selection through its effect on the effective population size.  相似文献   

3.
? Premise of study: Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments. ? Methods: We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use efficiency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use efficiency. ? Key results: Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic. ? Conclusions: Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability.  相似文献   

4.
This paper reviews studies on growth and size-structure dynamics of shoots and clones in clonal plants in comparison with those in non-clonal plants, and discusses the characteristics of clonal plants. The mode of competition between individuals (symmetric versus asymmetric, degree of competitive asymmetry), growth dynamics of individuals, allocation pattern between organs and spatial pattern of individuals are closely correlated with each other in non-clonal plant populations. Theoretical and field studies based on the diffusion model revealed that plants of “height-growth” type (mostly early-successional tree species) and plants of “diameter-growth” type (mostly late-successional tree species) tend to exhibit asymmetric competition and symmetric competition respectively. Moreover, asymmetrically competing plants show smaller effects of variation in individual growth rate and spatial pattern on the size-structure dynamics of the population than symmetrically competing plants. Thefefore, the spatial pattern of inviduals should be considered especially for plants undergoing symmetric competition. These results for non-clonal plants should have a significant implication also for the growth dynamics and competition in clonal plants. The mean growth rate of shoots [G(t,x) function] and hence the mode of competition between shoots differs among clonal plant species as in non-clonal plants. However, a large magnitude and size-independence (or slightly negative size-dependence) of the variation in growth rate of shoots [D(t,x) function], especially at the early stage in a growing season is a common characteristic of many clonal plant species, in contrast to the positively size-dependent variation in individual growth rate in non-clonal plants. This type of variation in shoot growth rate leads to the persistence of stable shoot populations even when the mean growth rate function is changed, and also in cases where the shoot population structure would be unstable in the absence of variation in growth rate. It is suggested that competition between clones is symmetric in most clonal plant species, which brings about small-scale spatio-temporal changes in species abundance and hence species diversity.  相似文献   

5.
Quantitatively linking individual variation in functional traits to demography is a necessary step to advance our understanding of trait‐based ecological processes. We constructed a population model for Asclepias syriaca to identify how functional traits affect vital rates and population growth and whether trade‐offs in chemical defence and demography alter population growth. Plants with higher foliar cardenolides had lower fibre, cellulose and lignin levels, as well as decreased sexual and clonal reproduction. Average cardenolide concentrations had the strongest effect on population growth. In both the sexual and clonal pathway, the trade‐off between reproduction and defence affected population growth. We found that both increasing the mean of the distribution of individual plant values for cardenolides and herbivory decreased population growth. However, increasing the variance in both defence and herbivory increased population growth. Functional traits can impact population growth and quantifying individual‐level variation in traits should be included in assessments of population‐level processes.  相似文献   

6.
Plants can respond to environmental impacts by variation in functional traits, thereby increasing their performance relative to neighbors. We hypothesized that trait adjustment should also occur in response to influences of the biotic environment, in particular different plant diversity of the community. We used 12 legume species as a model and assessed their variation in morphological, physiological, life-history and performance traits in experimental grasslands of different plant species (1, 2, 4, 8, 16 and 60) and functional group (1–4) numbers. Mean trait values and their variation in response to plant diversity varied among legume species and from trait to trait. The tall-growing Onobrychis viciifolia showed little trait variation in response to increasing plant diversity, whereas the species with shorter statures responded in apparently adaptive ways. The formation of longer shoots with elongated internodes, increased biomass allocation to supporting tissue at the cost of leaf mass, reduced branching, higher specific leaf areas and lower foliar δ13C values indicated increasing efforts for light acquisition in more diverse communities. Although leaf nitrogen concentrations and shoot biomass:nitrogen ratios were not affected by increasing plant diversity, foliar δ15N values of most legumes decreased and the application of the 15N natural abundance method suggested that they became more reliant on symbiotic N2 fixation. Some species formed fewer inflorescences and delayed flowering with increasing community diversity. The observed variation in functional traits generally indicated strategies of legumes to optimize light and nutrient capturing, but they were largely species-dependent and only partly attributable to increasing canopy height and community biomass with increasing plant diversity. Thus, the analysis of individual plant species and their adjustment to growth conditions in communities of increasing plant diversity is essential to get a deeper insight into the mechanisms behind biodiversity–ecosystem functioning relationships.  相似文献   

7.

Background and Aims

Both regional and local plant abundances are driven by species'' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden.

Methods

Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates.

Key Results

After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level.

Conclusions

Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden performance parameters provide a practical approach to assessing the roles of clonal growth morphological traits (and LHS traits) for large sets of species.  相似文献   

8.
Plant architecture is related to the performance of long‐lived plants; its role in promoting species coexistence and in successional patterns is now widely recognized. However, because plant architecture involves branching processes, it is highly variable at the intra‐specific level. In this paper, we address two questions: what is the best way to describe plant architecture to obtain meaningful information for explaining population cover: at the whole‐plant level, or at the level of its unitary constituent parts? Further, are there architectural designs related to populations’ success? We evaluated the relative impact of ontogeny and whole‐plant traits on the cover achieved by the populations of five shrub species developing on 25 abandoned farmlands in southwestern Québec (Canada). We compared four ways of analyzing plant architecture: 1–2) using morphological traits described at the scale of a module (an elementary architectural unit made up of all the different types of shoots), with or without taking into account the ontogeny of the whole organism, 3) using the rate of changes during ontogeny as traits, and 4) using whole‐plant traits describing branching processes at a scale larger than modules. We then used variation partitioning to discriminate the actual effects of these traits on percent cover of the species from hidden effects due to plant ontogenesis and population spatial structure. Our results suggest that the predominant variables that effectively describe population cover vary from one species to another. At the same time, whole‐plant architectural traits and the rate of change of morphological traits during ontogeny both have an important effect on population cover. These findings suggest that acknowledging the developmental pattern of woody species can clarify the impact of intra‐specific trait variation on population cover.  相似文献   

9.
Comparative studies of invasive, noninvasive alien, and native congenic plant species can identify plant traits that drive invasiveness. In particular, functional traits associated with rapid growth rate and high fecundity likely facilitate invasive success. As such traits often exhibit high phenotypic plasticity, characterizing plastic responses to anthropogenic environmental changes such as eutrophication and disturbance is important for predicting the invasive success of alien plant species in the future. Here, we compared trait expression and phenotypic plasticity at the species level among invasive, noninvasive alien, and native Bidens species. Plants were grown under nutrient addition and competition treatments, and their functional, morphological, and seed traits were examined. Invasive B. frondosa exhibited higher phenotypic plasticity in most measured traits than did the alien noninvasive B. pilosa or native B. bipinnata. However, differential plastic responses to environmental treatments rarely altered the rank of trait values among the three Bidens species, except for the number of inflorescences. The achene size of B. frondosa was larger, but its pappus length was shorter than that of B. pilosa. Two species demonstrated opposite plastic responses of pappus length to fertilization. These results suggest that the plasticity of functional traits does not significantly contribute to the invasive success of B. frondosa. The dispersal efficiency of B. frondosa is expected to be lower than that of B. pilosa, suggesting that long‐distance dispersal is likely not a critical factor in determining invasive success.  相似文献   

10.
AimHow plants cope with increases in population density via root plasticity is not well documented, although abiotic environments and plant ontogeny may have important roles in determining root response to density. To investigate how plant root plasticity in response to density varies with soil conditions and growth stages, we conducted a field experiment with an annual herbaceous species (Abutilon theophrasti).MethodsPlants were grown at low, medium, and high densities (13.4, 36.0, and 121.0 plants m−2, respectively), under fertile and infertile soil conditions, and a series of root traits were measured after 30, 50, and 70 days.ResultsRoot allocation increased, decreased, or canalized in response to density, depending on soil conditions and stages of plant growth, indicating the complex effects of population density, including both competitive and facilitative effects.Main conclusionsRoot allocation was promoted by neighbor roots at early stages and in abundant resource availability, due to low‐to‐moderate belowground interactions among smaller plants, leading to facilitation. As plants grew, competition intensified and infertile soil aggravated belowground competition, leading to decreased root allocation in response to density. Root growth may be more likely restricted horizontally rather than vertically by the presence of neighbor, suggesting a spatial orientation effect in their responses to density. We emphasized the importance of considering effects of abiotic conditions and plant growth stages in elucidating the complexity of density effects on root traits.  相似文献   

11.
Local competitive interactions strongly influence plant community dynamics. To maintain their performance under competition, clonal plants may plastically modify their network architecture to grow in the direction of least interference. The adaptive value of this plastic avoidance response may depend, however, on traits linked with the plant’s structural blueprint and ontogeny. We tested this hypothesis using virtual populations. We used an Individual Based Model to simulate competitive interactions among clones within a plant population. Clonal growth was studied under three competition intensities in plastic and non-plastic individuals. Plasticity buffered the negative impacts of competition at intermediate densities of competitors by promoting clone clumping. Success despite competition was promoted by traits linked with (1) the plant’s structural blueprint (weak apical dominance and sympodial growth) and (2) ontogenetic processes, with an increasing or a decreasing dependence of the elongation process on the branch generation level or length along the competition intensity gradient respectively. The adaptive value of the plastic avoidance response depended on the same traits. This response only modulated their importance for clone success. Our results show that structural blueprint and ontogeny can be primary filters of plasticity and can have strong implications for evolutionary ecology, as they may explain why clonal plants have developed many species-specific plastic avoidance behaviours.  相似文献   

12.
Nitrogen is often released in pulses with different frequencies, and N supply pulses may affect growth, reproduction, and biomass allocation of plants. However, few studies have examined how N supply pulses affect intraspecific competition of clonal plants and whether such an effect depends on the N supply amount. We grew one (no competition) or 12 ramets (with intraspecific competition) of both an invasive clonal plant Alternanthera philoxeroides and its native congener Alternanthera sessilis in five different N treatments: control (no N addition), low/high amount with low/high frequencies (pulses). Nitrogen addition significantly increased the growth of both species, while intraspecific competition decreased it. Nitrogen addition significantly increased intraspecific competitive intensity of A. philoxeroides as measured by the log response ratio of growth traits, but did not affect that of A. sessilis. Despite the N supply amount, N pulses had little effect on the growth and thus intraspecific competition of the two species. Therefore, increasing N deposition may change population structure and dynamics and the invasion succession of A. philoxeroides, but changes in N pulses may not.  相似文献   

13.
The way functional traits affect growth of plant species may be highly context‐specific. We asked which combinations of trait values are advantageous under field conditions in managed grasslands as compared to conditions without competition and land‐use. In a two‐year field experiment, we recorded the performance of 93 species transplanted into German grassland communities differing in land‐use intensity and into a common garden, where species grew unaffected by land‐use under favorable conditions regarding soil, water, and space. The plants’ performance was characterized by two independent dimensions (relative growth rates (RGR) of height and leaf length vs. aboveground biomass and survival) that were differently related to the eight focal key traits in our study (leaf dry matter content (LDMC), specific leaf area (SLA), height, leaf anatomy, leaf persistence, leaf distribution, vegetative reproduction, and physical defense). We applied multivariate procrustes analyses to test for the correspondence of the optimal trait–performance relationships between field and common garden conditions. RGRs were species‐specific and species ranks of RGRs in the field, and the common garden were significantly correlated. Different traits explained the performance in the field and the common garden; for example, leaf anatomy traits explained species performance only in the field, whereas plant height was found to be only important in the common garden. The ability to reproduce vegetatively, having leaves that are summer‐persistent and with high leaf dry matter content (LDMC) were traits of major importance under both settings, albeit the magnitude of their influence differed slightly between the field and the common garden experiment. All optimal models included interactions between traits, pointing out the necessity to analyze traits in combination. The differences between field and common garden clearly demonstrate context dependency of trait‐based growth models, which results in limited transferability of favorable trait combinations between different environmental settings.  相似文献   

14.
Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.  相似文献   

15.
Fitness and evolution in clonal plants: the impact of clonal growth   总被引:4,自引:0,他引:4  
Seeds have often been emphasized in estimates of plant fitness because they are the units that carry genes to the next generation, disperse, and found new populations. We contend that clonal growth also needs to be considered when estimating fitness in clonal plants, regardless of whether fitness is measured from a genet or ramet perspective. Clonal growth affects genet fitness through both genet persistence and seed production. It affects ramet fitness through new ramet production, because both seeds and clonal propagants are considered offspring. The differential production of clonal propagants will contribute to fitness differences among individuals which may result in population-level changes in allele frequencies (i.e. microevolution). We describe a form of selection unique to clonal organisms, genotypic selection, that can result in evolution. Genotypic selection occurs when genotypically based traits are associated with differences in the rate of ramet production. It can lead to evolutionary change in quantitative trait means both directly and indirectly. It leads directly to change in the ramet population by increasing the proportion of ramets with more advantageous trait values. From the genet perspective, it leads indirectly to evolution within and among populations whenever significant portions of the genetic effect on a trait are inherited through seed. We argue that under most conditions, clonal growth will play a major role in the microevolution of clonal plants.  相似文献   

16.
Intra- and interspecific trait variation express the response of plants dealing with different environmental conditions. We measured root and leaf traits on 14 species of calcareous grasslands in a restoration experiment. We aimed at identifying intraspecific differences in biomass allocation and functional plant traits under contrasting soil conditions by comparing plants growing in ancient grassland and two restored grasslands on ex-arable land, one of them with topsoil removal. Relative importance of trait variation within and among species, and among site was assessed by variance partitioning. Interspecific variation was more important than intraspecific variation, but the contribution of the latter to total variation was considerable, especially for specific leaf area. Changes in soil properties due to topsoil removal resulted in lower values of plant height, specific leaf area and specific root length compared to the control (ancient grassland). Soil fertility found in the treatment without top soil removal did not affect plant plasticity compared to the control. The study species showed two allocation strategies in relation to resource stress, while the responses of individual traits to the soil treatments were consistent across species. We conclude that caution must be taken when using mean trait values for plastic species or when working with environmental gradients.  相似文献   

17.
The response of ecological communities to environmental disturbances depends not just on the number of species they contain but also on the functional diversity of the constituent species; greater variation in the tolerance of species to different environmental disturbances is generally thought to confer greater resistance to the community. Here, I investigate how the functional diversity of communities changes with environmental disturbances. Specifically, I assume that there is variation in traits among species that confer tolerance or sensitivity to environmental disturbances. When a disturbance occurs, variation in species tolerances causes changes in the relative abundances of species, which in turn changes the average tolerance of the community. For example, if tolerance to an environmental disturbance is conferred by large body size, then the environmental disturbance should be expected to increase the average body size of individuals in the community. Despite this expectation, ecological interactions among species can affect the average community response. For example, if larger species are also strong competitors with each other, then this might reduce the increase in average body size in the community, because interspecific competition limits the grow in population density of large bodied species. Similarly, when disturbances affect multiple traits, the covariance in the distribution of trait values among species may restrict the response of any one trait; if two traits provide tolerance to the same disturbance but negatively covary among species, then the response of one trait will limit the response of the other trait at the community level. Using a Lotka–Volterra model for competitive communities, I derive general formulae that generate explicit predictions about the changes in average trait values in a community subject to environmental disturbances. These formulae demonstrate that competition can impede the change in average community trait values. However, the impediment is not considerable in comparison to the predominant factors of trait variances and species selection effects when species with the most similar trait values also experience the greatest interspecific competition. Similarly, negative covariances among different traits that confer resistance to the same environmental disturbance will impede their responses. I illustrate these results using phytoplankton data from a whole-lake experiment in which manipulation to the zooplankton community created a disturbance to the phytoplankton that changed the selective consumption of large vs. small phytoplankton.  相似文献   

18.

Background

Plant functional traits co-vary along strategy spectra, thereby defining trade-offs for resource acquisition and utilization amongst other processes. A main objective of plant ecology is to quantify the correlations among traits and ask why some of them are sufficiently closely coordinated to form a single axis of functional specialization. However, due to trait co-variations in nature, it is difficult to propose a mechanistic and causal explanation for the origin of trade-offs among traits observed at both intra- and inter-specific level.

Methodology/Principal Findings

Using the Gemini individual-centered model which coordinates physiological and morphological processes, we investigated with 12 grass species the consequences of deliberately decoupling variation of leaf traits (specific leaf area, leaf lifespan) and plant stature (height and tiller number) on plant growth and phenotypic variability. For all species under both high and low N supplies, simulated trait values maximizing plant growth in monocultures matched observed trait values. Moreover, at the intraspecific level, plastic trait responses to N addition predicted by the model were in close agreement with observed trait responses. In a 4D trait space, our modeling approach highlighted that the unique trait combination maximizing plant growth under a given environmental condition was determined by a coordination of leaf, root and whole plant processes that tended to co-limit the acquisition and use of carbon and of nitrogen.

Conclusion/Significance

Our study provides a mechanistic explanation for the origin of trade-offs between plant functional traits and further predicts plasticity in plant traits in response to environmental changes. In a multidimensional trait space, regions occupied by current plant species can therefore be viewed as adaptive corridors where trait combinations minimize allometric and physiological constraints from the organ to the whole plant levels. The regions outside this corridor are empty because of inferior plant performance.  相似文献   

19.
For animal‐dispersed plants, evolutionary direction of seed traits is largely determined by the trait preference of disperser animals. Thus, clarifying conditions determining the disperser's preferences is important for understanding the evolution of dispersal traits in animal‐dispersed plants. The intensity of the interference competition among dispersers may be a factor affecting the seed trait preference of disperser animals, because it often weakens the food preference of various animals. To test this possibility, we examined correlation between the intensity of interference competition among disperser ants and their trait preference for seeds of an ant‐dispersed sedge, Carex tristachya Thunb. (Cyperaceae). By a cafeteria experiment conducted in the field, we first confirmed the overall preference by disperser ants for the elaiosome, which is a seed appendage facilitating the dispersal by ants. Second, we detected the negative correlation between the preference for elaiosomes and the frequency of interference among ants at a depot. Third, we compared this trend between dominants and subordinates of ants and revealed that the negative correlation was seen only in dominant species. These results suggest that the intensity of interference competition and the variation in its effect on animal species at different social status play important roles for the evolution of seed traits via the modification of seed trait preference by disperser animals.  相似文献   

20.
Clonal architecture is involved in performance of clonal fragments, as it determines spatial distribution of ramets. It is expected to rely on the species-specific expression of several architectural traits (structural blue-print). However, in contrasting environments, realized clonal architectures may differ, due to phenotypic plasticity. In this paper, we compared clonal architectures between two rhizomatous ecologically close Cyperaceae (Carex divisa and Eleocharis palustris) in non-defoliated and defoliated conditions. Two questions were addressed. (1) How much do the structural blue-print and resulting colonization and occupation of space differ between both species? (2) Does the structural blue-print constrain plastic responses of clonal architecture to defoliation? Traits related to performance, spatial pattern, architecture and biomass allocation of clonal fragments were monitored through an original non-destructive mapping method. In non-defoliated conditions, both species showed similar biomass but contrasting architectures and patterns of biomass allocation to rhizomes that resulted in different spatial patterns. The rhizome network of C. divisa, which consisted in only two primary rhizomes but several branches, was involved in resource storage rather than in spatial colonization. Conversely, E. palustris produced on average six primary rhizomes that grew in the whole horizontal plane, maximizing both occupation and colonization of space. These differences in structural constraints coupled with allometric relationships, resulted in differential responses to defoliation. In C. divisa, the costs associated to defoliation caused a decrease in branching, limiting the area occupied and number of ramets produced by clonal fragments, but increasing ramet density. Conversely, the weakly branched rhizome network of E. palustris was not affected by defoliation. Both spatial strategies (consolidation vs. colonization) are likely to provide ecological advantages allowing their coexistence in grazed meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号