首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and relatively cheap glucose biosensor based on a combination of gold nanoparticles (Au NPs) and glucose oxidase (GO(x) ) immobilized on a bioplatform eggshell membrane was established. Scanning electron microscopy showed successful immobilization of Au NPs/GO(x) on the eggshell membrane. The effects of pH, phosphate buffer concentration, and temperature on the glucose biosensor were studied in detail. The biosensor shows a linear response at a glucose concentration range of 5-525 μM. The detection limit of the biosensor is 2.5 μM (S/N = 3). The biosensor exhibits good repeatability with RSD = 3.6% (n = 6), good operational stability with over 300 measurements and long-term storage stability with a shelf life of at least 6 months. The response time is less than 60 s. The glucose level in commercial food samples has been successfully determined. The proposed work shows potential to develop cost-effective biosensors for biotechnological, biomedical and industrial use.  相似文献   

2.
A cobalt(II)hexacyanoferrate-based biosensor has been prepared simply by codeposition of an enzyme, together with the electrochemical formation of a cobalt (II)hexacyanoferrate compound electrochemically. The compound can be generated at a constant potential of -0.05 V (vs. Ag/AgCl). This compound possesses the catalytic property of reducing hydrogen peroxide to water at the operating potential of 0.0 V vs. Ag/AgCl. The mixed-valence compound-based biosensor possesses an unique interference-independent feature, which is important for biomedical application; this feature is attributed to the low overvoltage characteristic of cobalt (II)hexacyanoferrate. The electrochemical glucose biosensor responds to a series of glucose injections with linearity up to 5 mM (with correlation coefficient R = 0.9999) and the sensitivity of the linear portion is 733 nA/(cm2 x mM). The detection limit is 2 x 10(-6)M (S/N = 3). Both the potential-dependent electron transfer rate constant and the apparent Michaelis-Menten constant were studied in rotating disk experiments. The apparent Michaelis-Menten constant, Km' calculated from the slope of the "Lineweaver-Burke" type reciprocal plot is 28 mM. A fast-response characteristic is observed in the rotating disk experiment and the 95% response time is 14.5 sec. No response was observed from the addition of either 2 x 10(-4)M galactose, acetaminophen, ascorbic acid, uric acid, cysteine, tyrosine, dopamine, or 1,4-dihydroxyquinone in the absence and/or in the presence of 5 x 10(-4)M glucose.  相似文献   

3.
A sensitive and selective amperometric glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline (PANI) was investigated. Poly (m-phenylenediamine) (PMPD), which was employed as an anti-interferent barrier and a protective layer to platinum microparticles, was deposited onto platinum-modified PANI in the presence of glucose oxidase. The morphology of PANI, Pt/PANI and PMPD-GOD/Pt/PANI were investigated by scanning electron microscopy. The results show that PANI has a nano-fibrous morphology. The enzyme electrode exhibits excellent response performance to glucose with linear range from 2 x 10(-6) to 12 x 10(-3) M and fast response time within 7s. Due to the selective permeability of PMPD, the enzyme electrode also shows good anti-interference to uric acid and ascorbic acid. The Michaelis-Menten constant km and the maximum current density imax of the enzyme electrode were 9.34 x 10(-3) M and 917.43 microA cm(-2), respectively. Furthermore, this glucose biosensor also has good stability and reproducibility.  相似文献   

4.
Shan D  He Y  Wang S  Xue H  Zheng H 《Analytical biochemistry》2006,356(2):215-221
A novel glucose biosensor was constructed by electrochemical entrapment of glucose oxidase (GOD) into porous poly(acrylonitrile-co-acrylic acid), which was synthesized via radical polymerization of acrylonitrile and acrylic acid. The obtained biosensor showed a better stability and higher sensitivity than the biosensor prepared by simple physical adsorption. Effects of some experimental variables such as immobilization time, enzyme concentration, pH, applied potential, and temperature on the amperometric response of the sensor were investigated. The biosensor exhibited a rapid response to glucose (< 30s) with a linear range of 5 x 10(-6) to 3 x 10(-3)M and a sensitivity of 6.82 mAM(-1)cm(-2). The apparent Michaelis-Menten constant (K(M)(app)) was 7.3mM.  相似文献   

5.
A miniaturized glucose biosensor in which glucose oxidase (GOD) and poly(p-phenylenediamine) (poly-PPD) were coimmobilized at the surface of a platinum microdisk electrode was developed and used successfully for amperometric determination of glucose. The performance of sensors prepared at different monomer concentrations and polymerization potentials with different media was investigated in detail. It was found that similarly to poly(o-phenylenediamine) (poly-OPD), (poly-PPD) noticeably eliminated the electrochemical interference of ascorbic acid, uric acid, and l-cysteine. The amperometric response of glucose with the biosensor under optimal conditions exhibited a linear relationship in the range of 5.0 x 10(-5) to 3.0 x 10(-3) M with correlation coefficient 0.9995. According to the Michaelis-Menten equation, the apparent Michaelis constant for glucose and the maximum steady-state current density of the poly-PPD/GOD-modified microelectrode were 3.94 mM and 607.5 microA cm(-2), respectively. The current density of the sensor responding to glucose in the linear range can reach 160 microA cm(-2) mM(-1), which is far greater than that obtained using poly-OPD and poly(phenol) film. In addition, the stability of the sensor was examined over a 2-month period.  相似文献   

6.
A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H(2)O(2) was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H(2)O(2) without electron mediator or promoter, at a potential of +0.10 V versus Agmid R:AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N=3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.  相似文献   

7.
Platinum nanowires (PtNWs) prepared by electrodeposition method with the help of porous anodic aluminum oxide (AAO) templates have been solubilized in chitosan (CHIT) together with carbon nantubes (CNTs) to form a PtNW-CNT-CHIT organic-inorganic system. The resulting PtNW-CNT-CHIT material brings capabilities for utilizing synergic action of PtNWs and CNTs to facilitate electron-transfer process in electrochemical sensor design. The PtNW-CNT-CHIT film modified electrode offered a significant decrease in the overvoltage for the hydrogen peroxide and showed to be excellent amperometric sensors for hydrogen peroxide at -0.1 V over a wide range of concentrations, and the sensitivity is 260 microAmM-1cm-2. As an application example, by linking glucose oxidase (GOx), an amplified biosensor toward glucose was prepared. The glucose biosensor exhibits a selective determination of glucose at -0.1 V with a linear response range of 5 x 10(-6) to 1.5 x 10(-2)M with a correlation coefficient of 0.997, and response time <10s. The high sensitivity of the glucose biosensor is up to 30 microAmM-1cm-2 and the detection limit was 3 microM. The biosensor displays rapid response and expanded linear response range, and excellent repeatability and stability.  相似文献   

8.
The determination of xanthine has considerable importance in clinical and food quality control. Therefore, in this present work, we developed a novel xanthine biosensor based on immobilization of xanthine oxidase (XnOx) by attractive materials layered double hydroxides (LDHs). Amperometric detection of xanthine was evaluated by holding the modified electrode at 0.55V (versus saturated calomel electrode (SCE)). Due to the special properties of LDHs, such as chemical inertia, mechanical and thermal stability, anionic exchange ability, high porosity and swelling properties, XnOx/LDHs-modified electrode exhibited a developed analytical performance. The biosensor provided a linear response to xanthine over a concentration range of 1 x 10(-6)M to 2 x 10(-4)M with a sensitivity of 220 mAM(-1)cm(-2) and a detection limit of 1x10(-7)M based on S/N=3. In addition, the immobilized XnOx layers have been characterized using atomic force microscopy under both air atmosphere and liquid environment, which exhibited the interesting swelling phenomenon of LDHs. The investigation of inhibition of XnOx by allopurinol was carried out using this XnOx/LDHs-modified electrode. The experimental results indicated that inhibitory effect could be achieved by allopurinol with a quasi-reversible competitive type.  相似文献   

9.
Zou Y  Sun LX  Xu F 《Biosensors & bioelectronics》2007,22(11):2669-2674
In this work, a novel route for fabrication polyaniline (PANI)-Prussian Blue (PB) hybrid composites is proposed by the spontaneous redox reaction in the FeCl(3)-K(3)[Fe(CN)(6)] and the aniline solution. With the introduction of multi-walled carbon nanotubes (MWNTs), the PANI-PB/MWNTs system shows synergy between the PANI-PB and MWNTs which amplified the H(2)O(2) sensitivity greatly. A linear range from 8 x1 0(-8) to 1 x 10(-5)M and a high sensitivity 508.1 8 microA microM cm(2) for H(2)O(2) detection are obtained. The composites also show good stability in neutral solution. A glucose biosensor was further constructed by immobilizing glucose oxidase (GOD) with Nafion and glutaraldehyde on the electrode surface. The performance factors influencing the resulted biosensor were studied in detail. The biosensor exhibits excellent response performance to glucose with the linear range from 1 to 11 mM and a detection limit of 0.01 mM. Furthermore, the biosensor shows rapid response, high sensitivity, good reproducibility, long-term stability and freedom of interference from other co-existing electroactive species.  相似文献   

10.
A novel organic-inorganic nanocomposite of methylene blue (MB) and silicon oxide was synthesized and characterized by TEM, FTIR, and UV-vis. The as-prepared material was able to transfer the electron of the MB to electrode and was different from other SiO2 spheres structurally. It can be used as mediator to construct a biosensor with horseradish peroxidase (HRP) coimmobilized in the gelatine matrix and cross-linked with formaldehyde. The resulting biosensor exhibited fast amperometric response and good stability to hydrogen peroxide (H2O2). The linear range for H2O2 determination was from 1 x 10(-5) to 1.2 x 10(-3) M, with a detection limit of 4 x 10(-6) M based on S/N = 3. Moreover, the lifetime is more than 3 months under dry conditions at 4 degrees C.  相似文献   

11.
We are reporting fabrication and characterization of electrochemical sucrose biosensor using ultra-microelectrode (UME) for the detection of heavy metal ions (Hg(II), Ag(I), Pb(II) and Cd(II)). The working UME, with 25 microm diameter, was modified with invertase (INV, EC: 3.2.1.26) and glucose oxidase (GOD, EC: 1.1.3.4) entrapped in agarose-guar gum. The hydrophilic character of the agarose-guar gum composite matrix was checked by water contact angle measurement. The atomic force microscopy (AFM) images of the membranes showed proper confinement of both the enzymes during co-immobilization. The dynamic range for sucrose biosensor was achieved in the range of 1 x 10(-10) to 1 x 10(-7)M with lower detection limit 1 x 10(-10)M at pH 5.5 with 9 cycles of reuse. The spectrophotometric and electrochemical studies showed linear relationship between concentration of heavy metal ions and degree of inhibition of invertase. The toxicity sequence for invertase using both methods was observed as Hg(2+)>Pb(2+)>Ag(+)>Cd(2+). The dynamic linear range for mercury using electrochemical biosensor was observed in the range of 5 x 10(-10) to 12.5 x 10(-10)M for sucrose. The lower detection limit for the fabricated biosensor was found to be 5 x 10(-10)M. The reliability of the electrochemical biosensor was conformed by testing the spike samples and the results were comparable with the conventional photometric DNSA method.  相似文献   

12.
Tan X  Li M  Cai P  Luo L  Zou X 《Analytical biochemistry》2005,337(1):111-120
A new type of amperometric cholesterol biosensor based on sol-gel chitosan/silica and multiwalled carbon nanotubes (MWCNTs) organic-inorganic hybrid composite material was developed. The hybrid composite film was used to immobilize cholesterol oxidase on the surface of Prussian blue-modified glass carbon electrode. Effects of some experimental variables such as enzyme loading, concentration of Triton X-100, pH, temperature, and applied potential on the current response of the biosensor were investigated. Analytical characteristics and dynamic parameters of the biosensors with and without MWCNTs in the hybrid film were compared, and the results show that analytical performance of the biosensor can be improved greatly after introduction of the MWCNTs. Response time, sensitivity, linear range, limit of detection (S/N=3), and apparent Michaelis-Menten constant Km are 25s, 0.54 microA mM(-1), 8.0 x 10(-6) to 4.5 x 10(-4) M, 4.0 x 10(-6) M, and 0.41 mM for the biosensor without MWCNTs and 13 s, 1.55 microA mM(-1), 4.0 x 10(-6) to 7.0 x 10(-4) M, 1.0 x 10(-6) M, and 0.24 mM for the biosensor with MWCNTs, respectively. The activation energy of the enzyme-catalyzed reaction was measured to be 42.6 kJ mol(-1). This method has been used to determine the free cholesterol concentration in real human blood samples.  相似文献   

13.
The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H(2)O(2), an important metabolite that could be generated by many biocatalytic reactions. Upon the stepwise enlargement of Au-NPs, the light scattering intensity could be greatly enhanced, which then allowed the quantitative detection of the analyte, H(2)O(2). Further combination of the biocatalytic reaction that can yield H(2)O(2) by using the enzyme, glucose oxidase, with the enlargement of Au-NPs enabled the design of a sensitive glucose biosensor using the RLS technique. In the present study, we could achieve the detection of glucose in a linear range of 1.0 x 10(-6) M to 1.1 x 10(-4) M, with detection limit of 6.8 x 10(-7) M.  相似文献   

14.
Han E  Shan D  Xue H  Cosnier S 《Biomacromolecules》2007,8(3):971-975
A new type of amperometric phenol biosensor based on chitosan/layered double hydroxides organic-inorganic composite film was described. This hybrid material combined the advantages of organic biopolymer, chitosan, and inorganic layered double hydroxides. Polyphenol oxidase (PPO) immobilized in the material maintained its activity well as the usage of glutaraldehyde was avoided. The composite films have been characterized by Fourier transform infrared. The results indicated that PPO retained the essential feature of its native structure in the composite film. The enzyme electrode provided a linear response to catechol over a concentration range of 3.6 x 10(-9) to 4 x 10(-5) M with a sensitivity of 2750 +/- 52 mA M(-1) cm(-2) and a detection limit of 0.36 nM based on S/N = 3. The apparent Michaelis-Menten constant K(app)(M) for the sensor was found to be 0.13 mM. The activation energy for enzymatic reaction was calculated to be 27.6 kJ mol(-1). Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility.  相似文献   

15.
The present study reports on the use of p(2-hydroxyethyl methacrylate) (pHEMA) in which polypyrrole and various oxidoreductase enzymes were physically entrapped to function as a viable matrix for the construction of clinically important amperometric biosensors. Glucose oxidase, cholesterol oxidase and galactose oxidase biosensors were constructed. Electrode-supported hydrogel films were prepared by UV polymerization of the HEMA component (containing the dissolved enzyme) followed immediately by electrochemical polymerization (+0.7V vs. Ag/AgCl) of the pyrrole component within the interstitial spaces of the pre-formed hydrogel network. The optimized glucose oxidase biosensor displayed a wide linear glucose response range (5.0 x 10(-5) to 2.0 x 10(-2) M), a detection limit (3S(y/x)/sensitivity) of 25 microM and a response time of 35-40 s. The analytical recovery of glucose in serum samples ranged from 98 to 102% with mean coefficients of variation of 4.4% (within-day analyses) and 5.1% (day-to-day analyses). All three sensors displayed good stabilities when stored desiccated in the absence of buffer (>9 months).  相似文献   

16.
The nanocomposite composed of carboxymethyl chitosan (CMCS) and gold nanoparticles was successfully prepared by a novel and in situ process. It was characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectrophotometer (FTIR). The nanocomposite was hydrophilic even in neutral solutions, stable and inherited the properties of the AuNPs and CMCS, which make it biocompatible for enzymes immobilization. HRP, as a model enzyme, was immobilized on the silica sol-gel matrix containing the nanocomposite to construct a novel H(2)O(2) biosensor. The direct electron transfer of HRP was achieved and investigated. The biosensor exhibited a fast amperometric response (5s), a good linear response over a wide range of concentrations from 5.0 x 10(-6) to 1.4 x 10(-3)M, and a low detection limit of 4.01 x 10(-7)M. The apparent Michaelis-Menten constant (K(M)(app)) for the biosensor was 5.7 x 10(-4)M. Good stability and sensitivity were assessed for the biosensor.  相似文献   

17.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

18.
In this work, a novel chemiluminescence (CL) flow biosensor for glucose was proposed. Glucose oxidase (GOD), horseradish peroxidase (HRP) and gold nanoparticles were immobilized with sol-gel method on the inside surface of the CL flow cell. The CL detection involved enzymatic oxidation of glucose to d-gluconic acid and H(2)O(2), and then the generated H(2)O(2) oxidizing luminol to produce CL emission in the presence of HRP. It was found that gold nanoparticles could remarkably enhance the CL respond of the glucose biosensor. The enhanced effect was closely related to the sizes of gold colloids, and the smaller the size of gold colloids had the higher CL respond. The immobilization condition and the CL condition were studied in detail. The CL emission intensity was linear with glucose concentration in the range of 1.0 x 10(-5)molL(-1) to 1.0 x 10(-3)molL(-1), and the detection limit was 5 x 10(-6)molL(-1) (3sigma). The apparent Michaelis-Menten constant of GOD in gold nanoparticles/sol-gel matrix was evaluated to be 0.3mmolL(-1), which was smaller than that of GOD immobilized in sol-gel matrix without gold nanoparticles. The proposed biosensor exhibited short response time, easy operation, low cost and simple assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

19.
Li XM  Ju HQ  Zhang SS 《Oligonucleotides》2008,18(1):73-80
An electrochemical method was used to probe the interaction between 2-aminophenoxazine-3-one (AP) and the short DNA sequence related to the hepatitis B virus (HBV), and an electrochemical DNA biosensor was developed. The voltammetric signals of AP have been investigated at bare glassy carbon electrode (bare GCE), hybrid double-stranded DNA-modified GCE (dsDNA/GCE), and single-stranded DNA-modified GCE (ssDNA/GCE) by means of differential pulse voltammetry (DPV), and the peak currents increased with respect to the order of electrodes. The extent of hybridization was evaluated on the basis of the difference between signals of AP with a probe before and after hybridization with the complementary sequence. Control experiments with noncomplementary were performed to test the selectivity of the biosensor. With this approach, a sequence of the HBV could be quantified over the range from 3.53 x 10(-7) to 1.08 x 10(-6) M, with a linear correlation of r = 0.9963 and a detection limit of 1.00 x 10(-7) M.  相似文献   

20.
S Wu  G Liu  P Li  H Liu  H Xu 《Biosensors & bioelectronics》2012,38(1):289-294
A novel and fast-fabricated Prussian blue (PB)/topological insulator Bi(2)Se(3) hybrid film has been prepared by coelectrodeposition technique. Taking advantages of topological insulator in possessing exotic metallic surface states with bulk insulating gap, Prussian blue nanoparticles in the hybrid film have smaller size as well as more compact structure, showing excellent pH stability even in the alkalescent solution of pH 8.0. Based on the Laviron theory, the electron transfer rate constant of PB/Bi(2)Se(3) hybrid film modified electrode was calculated to be 4.05±0.49s(-1), a relatively big value which may be in favor of establishing a high-sensitive biosensor. An amperometric glucose biosensor was then fabricated by immobilizing glucose oxidase (GOD) on the hybrid film. Under the optimal conditions, a wide linear range extending over 3 orders of magnitude of glucose concentrations (1.0×10(-5)-1.1×10(-2)M) was obtained with a high sensitivity of 24.55μAmM(-1) cm(-2). The detection limit was estimated for 3.8μM defined from a signal/noise of 3. Furthermore, the resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号