首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.  相似文献   

2.
The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal α-glucosidases and not just α-amylase. This understanding could lead to a new approach to regulate the glycemic response and glucose-related physiologic responses in the human body. There are six digestive enzymes for starch: salivary and pancreatic α-amylases and four mucosal α-glucosidases, including N- and C-terminal subunits of both maltase-glucoamylase and sucrase-isomaltase. Only the mucosal α-glucosidases provide the final hydrolytic activities to produce substantial free glucose. We report here the unique and shared roles of the individual α-glucosidases for α-glucans persisting after starch is extensively hydrolyzed by α-amylase (to produce α-limit dextrins (α-LDx)). All four α-glucosidases share digestion of linear regions of α-LDx, and three can hydrolyze branched fractions. The α-LDx, which were derived from different maize cultivars, were not all equally digested, revealing that the starch source influences glucose generation at the mucosal α-glucosidase level. We further discovered a fraction of α-LDx that was resistant to the extensive digestion by the mucosal α-glucosidases. Our study further challenges the conventional view that α-amylase is the only rate-determining enzyme involved in starch digestion and better defines the roles of individual and collective mucosal α-glucosidases. Strategies to control the rate of glucogenesis at the mucosal level could lead to regulation of the glycemic response and improved glucose management in the human body.  相似文献   

3.
α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from Escherichia coli and carried out a biochemical characterization of the protein to find factors that regulate its activity. Recombinant AtAMY3 was active toward both insoluble starch granules and soluble substrates, with a strong preference for β-limit dextrin over amylopectin. Activity was shown to be dependent on a conserved aspartic acid residue (Asp666), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases, with a pH optimum of 7.5–8, appropriate for activity in the chloroplast stroma. AtAMY3 is also redox-regulated, and the inactive oxidized form of AtAMY3 could be reactivated by reduced thioredoxins. Site-directed mutagenesis combined with mass spectrometry analysis showed that a disulfide bridge between Cys499 and Cys587 is central to this regulation. This work provides new insights into how α-amylase activity may be regulated in the chloroplast.  相似文献   

4.
Posttranslational modifications that give rise to multiple forms of α-amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) were studied. When analyzed by denaturing polyacrylamide gel electrophoresis, barley α-amylase has a molecular mass of 43 to 44 kilodaltons, but isoelectric focusing resolves the enzyme into a large number of isoforms. To precisely identify these isoforms, we propose a system of classification based on their isoelectric points (pl). α-Amylases with pls of approximately 5, previously referred to as low pl or Amy1 isoforms, have been designated HAMY1, and α-amylases with pls of approximately 6, referred to as high pl or Amy2, are designated HAMY2. Individual isoforms of HAMY1 and HAMY2 are identified by their pls. For example, the most acidic α-amylase synthesized and secreted by barley aleurone layers is designated HAMY1(4.56). Some of the diversity in the pls of barley α-amylases arises from posttranslational modifications of the enzyme. We report the isolation of a factor from barley aleurone layers and incubation media that can modify HAMY1 isoforms in vitro. This factor has a molecular mass between 30 and 50 kilodaltons, and it can catalyze the conversion of HAMY1(4.90) and HAMY1(4.64) to isoforms 4.72 and 4.56, respectively. The in vitro conversion of HAMY1 isoforms by the factor is favored by pH values of approximately 5 and is inhibited at approximately pH 7. The level of this factor in aleurone layers and incubation media is not affected by treatment of the tissue with gibberellic acid. The amylase-modifying activity from barley will also modify α-amylases isolated from human saliva and porcine pancreas. An activity that can modify HAMY1 isoforms in vitro has also been isolated from Onozuka R10 cellulase. Because the activity isolated from barley lowers the pl of α-amylase from barley, human saliva, and porcine pancreas, we speculate that it is a deamidase.  相似文献   

5.
The specific measurement of α-amylase activity in crude plant extracts is difficult because of the presence of β-amylases which directly interfere with most assay methods. Methods compared in this study include heat treatment at 70°C for 20 min, HgCl2 treatment, and the use of the α-amylase specific substrate starch azure. In comparing alfalfa (Medicago sativa L.), soybeans (Glycine max [L.] Merr.), and malted barley (Hordeum vulgare L.), the starch azure assay was the only satisfactory method for all tissues. While β-amylase can liberate no color alone, over 10 International units per milliliter β-amylase activity has a stimulatory effect on the rate of color release. This stimulation becomes constant (about 4-fold) at β-amylase activities over 1,000 International units per milliliter. Two starch azure procedures were developed to eliminate β-amylase interference: (a) the dilution procedure, the serial dilution of samples until β-amylase levels are below levels that interfere; (b) the β-amylase saturation procedure, addition of exogenous β-amylase to increase endogenous β-amylase activity to saturating levels. Both procedures yield linear calibrations up to 0.3 International units per milliliter. These two procedures produced statistically identical results with most tissues, but not for all tissues. Differences between the two methods with some plant tissues was attributed to inaccuracy with the dilution procedure in tissues high in β-amylase activity or inhibitory effects of the commercial β-amylase. The β-amylase saturation procedure was found to be preferable with most species. The heat treatment was satisfactory only for malted barley, as α-amylases in alfalfa and soybeans are heat labile. Whereas HgCl2 proved to be a potent inhibitor of β-amylase activity at concentrations of 10 to 100 micromolar, these concentrations also partially inhibited α-amylase in barley malt. The reported α-amylase activities in crude enzyme extracts from a number of plant species are apparently the first specific measurements reported for any plant tissues other than germinating cereals.  相似文献   

6.
An endogenous alpha-amylase inhibitor in barley kernels   总被引:1,自引:0,他引:1       下载免费PDF全文
Barley (Hordeum distichum cv Klages) kernels were shown to contain a factor that converted malted barley α-amylase II to the α-amylase III form. After purification by ammonium sulfate fractionation, ion exchange chromatography on DEAE-Sephacel, and gel-filtration on Bio Gel P60, the factor gave a single band of protein on isoelectric focusing. The purified factor inhibited hydrolysis of soluble starch by α-amylase II from malted barley and germinated wheat (Triticum aestivum cv Neepawa). However, α-amylase I from these cereals was not affected. The inhibitor was not dialyzable and was retained by a PM 10 ultrafiltration membrane suggesting a molecular weight greater than 10,000 daltons. Heat treatment of the inhibitor at 70°C for 15 minutes at pH 5.5 and 8.0 resulted in considerable loss of inhibitory activity.  相似文献   

7.
The most abundant β-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this β-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be a β-amylase by end product analysis and by its inability to hydrolyze β-limit dextrin and to release dye from starch azure. Pea β-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a Km of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromer-curiphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea β-amylase is competitively inhibited by its end product, maltose, with a Ki of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with α-cyclohexaamylose being a stronger inhibitor than β-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea β-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea β-amylase is the multichain type. Possible roles of pea β-amylase in cellular glucan metabolism are discussed.  相似文献   

8.
For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×108 Da, BE-WCS: 2.76×105 Da, and BEBA-WCS 1.62×105 Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release.  相似文献   

9.
Despite extensive biochemical analyses, the biological function(s) of plant β-amylases remains unclear. The fact that β-amylases degrade starch in vitro suggests that they may play a role in starch metabolism in vivo. β-Amylases have also been suggested to prevent the accumulation of highly polymerized polysaccharides that might otherwise impede flux through phloem sieve pores. The identification and characterization of a mutant of Arabidopsis var. Columbia with greatly reduced levels of β-amylase activity is reported here. The reduced β-amylase 1 (ram1) mutation lies in the gene encoding the major form of β-amylase in Arabidopsis. Although the Arabidopsis genome contains nine known or putative β-amylase genes, the fact that the ram1 mutation results in almost complete loss of β-amylase activity in rosette leaves and inflorescences (stems) indicates that the gene affected by the ram1 mutation is responsible for most of the β-amylase activity present in these tissues. The leaves of ram1 plants accumulate wild-type levels of starch, soluble sugars, anthocyanin, and chlorophyll. Plants carrying the ram1 mutation also exhibit wild-type rates of phloem exudation and of overall growth. These results suggest that little to no β-amylase activity is required to maintain normal starch levels, rates of phloem exudation, and overall plant growth.  相似文献   

10.
Beta-Amylases from Alfalfa (Medicago sativa L.) Roots   总被引:8,自引:8,他引:0       下载免费PDF全文
Amylase was found in high activity (193 international units per milligram protein) in the tap root of alfalfa (Medicago sativa L. cv. Sonora). The activity was separated by gel filtration chromatography into two fractions with molecular weights of 65,700 (heavy amylase) and 41,700 (light amylase). Activity staining of electrophoretic gels indicated the presence of one isozyme in the heavy amylase fraction and two in the light amylase fraction. Three amylase isozymes with electrophoretic mobilities identical to those in the heavy and the light amylase fractions were the only amylases identified in crude root preparations. Both heavy and light amylases hydrolyzed amylopectin, soluble starch, and amylose but did not hydrolyze pullulan or β-limit dextrin. The ratio of viscosity change to reducing power production during starch hydrolysis was identical for both alfalfa amylase fractions and sweet potato β-amylase, while that of bacterial α-amylase was considerably higher. The identification of maltose and β-limit dextrin as hydrolytic end-products confirmed that these alfalfa root amylases are all β-amylases.  相似文献   

11.
Several studies have suggested that debranching enzymes (DBEs) are involved in the biosynthesis of amylopectin, the major constituent of starch granules. Our systematic analysis of all DBE mutants of Arabidopsis thaliana demonstrates that when any DBE activity remains, starch granules are still synthesized, albeit with altered amylopectin structure. Quadruple mutants lacking all four DBE proteins (Isoamylase1 [ISA1], ISA2, and ISA3, and Limit-Dextrinase) are devoid of starch granules and instead accumulate highly branched glucans, distinct from amylopectin and from previously described phytoglycogen. A fraction of these glucans are present as discrete, insoluble, nanometer-scale particles, but the structure and properties of this material are radically altered compared with wild-type amylopectin. Superficially, these data support the hypothesis that debranching is required for amylopectin synthesis. However, our analyses show that soluble glucans in the quadruple DBE mutant are degraded by α- and β-amylases during periods of net accumulation, giving rise to maltose and branched malto-oligosaccharides. The additional loss of the chloroplastic α-amylase AMY3 partially reverts the phenotype of the quadruple DBE mutant, restoring starch granule biosynthesis. We propose that DBEs function in normal amylopectin synthesis by promoting amylopectin crystallization but conclude that they are not mandatory for starch granule synthesis.  相似文献   

12.
Enzymes of starch metabolism in the developing rice grain   总被引:7,自引:5,他引:2       下载免费PDF全文
The levels of starch, soluble sugars, protein, and enzymes involved in starch metabolism—α-amylase, β-amylase, phosphorylase, Q-enzyme, R-enzyme, and starch synthetase —were assayed in dehulled developing rice grains (Oryzasativa L., variety IR8). Phosphorylase, Q-enzyme, and R-enzyme had peak activities 10 days after flowering, whereas α- and β-amylases had maximal activities 14 days after flowering. Starch synthetase bound to the starch granule increased in activity up to 21 days after flowering. These enzymes (except the starch synthetases) were also detected by polyacrylamide gel electrophoresis. Their activity in grains at the midmilky stage (8-10 days after flowering) was determined in five pairs of lines with low and high amylose content from different crosses. The samples had similar levels of amylases, phosphorylase, R-enzyme, and Q-enzyme. The samples consistently differed in their levels of starch synthetase bound to the starch granule, which was proportional to amylose content. Granule-bound starch synthetase may be responsible for the integrity of amylose in the developing starch granule.  相似文献   

13.
Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.  相似文献   

14.
The effect of gibberellic acid and Ca2+ on the accumulation of α-amylase mRNAs in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) was studied using cDNA clones containing sequences of mRNAs for the high and low isoelectric point (pI) α-amylases. There is no significant hybridization between the two α-amylase cDNA clones under the hybridization and washing conditions employed. These clones were therefore used to monitor levels of mRNAs for high and low pI α-amylases. It is shown that although the synthesis of the high pI α-amylase proteins depends on the presence of Ca2+ in the incubation medium, the accumulation of mRNA for this group occurs to the same degree in the presence or the absence of Ca2+. The accumulation of low pI α-amylase mRNA is also not affected by the presence or absence of Ca2+ in the incubation medium. These results establish gibberellic acid, not Ca2+, as the principal regulator of α-amylase mRNA accumulation in barley aleurone, while Ca2+ controls high pI α-amylase synthesis at a later step in the biosynthetic pathway.  相似文献   

15.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher α-amylaseactivity than the parent strain under submerged culture at 30°C for 24 h. About 70% of the total α-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable α-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable α-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal α-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

16.
The effect of high hydrostatic pressure (HHP) on the susceptibility of potato starch (25%, w/v) suspended in water to degradation by exposure to bacterial α-amylase (0.02%, 0.04% and 0.06%, w/v) for 40 min at 25°C was investigated. Significant differences (p < 0.05) in the structure, morphology and physicochemical properties were observed. HHP-treated potato starch (PS) exposed to α-amylase (0.06%, w/v) showed a significantly greater degree of hydrolysis and amount of reducing sugar released compared to α-amylase at a concentration of 0.04% (w/v) or 0.02% (w/v). Native PS (NPS) granules have a spherical and elliptical form with a smooth surface, whereas the hydrolyzed NPS (hNPS) and hydrolyzed HHP-treated PS granules showed irregular and ruptured forms with several cracks and holes on the surface. Hydrolysis of HHP-treated PS by α-amylase could decrease the average granule size significantly (p <0.05) from 29.43 to 20.03 μm. Swelling power decreased and solubility increased with increasing enzyme concentration and increasing pressure from 200–600 MPa, with the exception of the solubility of HHP-treated PS at 600 MPa (HHP600 PS). Fourier transform infrared spectroscopy (FTIR) showed extensive degradation of the starch in both the ordered and the amorphous structure, especially in hydrolyzed HHP600 PS. The B-type of hydrolyzed HHP600 PS with α-amylase at a concentration 0.06% (w/v) changed to a B+V type with an additional peak at 2θ = 19.36°. The HHP600 starch with 0.06% (w/v) α-amylase displayed the lowest value of T o (onset temperature), T c (conclusion temperature) and ΔH gel (enthalpies of gelatinization). These results indicate the pre-HHP treatment of NPS leads to increased susceptibility of the granules to enzymatic degradation and eventually changes of both the amorphous and the crystalline structures.  相似文献   

17.
Beers EP  Duke SH 《Plant physiology》1990,92(4):1154-1163
The most abundant α-amylase (EC 3.2.1.1) in shoots and cotyledons from pea (Pisum sativum L.) seedlings was purified 6700-and 850-fold, respectively, utilizing affinity (amylose and cycloheptaamylose) and gel filtration chromatography and ultrafiltration. This α-amylase contributed at least 79 and 15% of the total amylolytic activity in seedling cotyledons and shoots, respectively. The enzyme was identified as an α-amylase by polarimetry, substrate specificity, and end product analyses. The purified α-amylases from shoots and cotyledons appear identical. Both are 43.5 kilodalton monomers with pls of 4.5, broad pH activity optima from 5.5 to 6.5, and nearly identical substrate specificities. They produce identical one-dimensional peptide fingerprints following partial proteolysis in the presence of SDS. Calcium is required for activity and thermal stability of this amylase. The enzyme cannot attack maltodextrins with degrees of polymerization below that of maltotetraose, and hydrolysis of intact starch granules was detected only after prolonged incubation. It best utilizes soluble starch as substrate. Glucose and maltose are the major end products of the enzyme with amylose as substrate. This α-amylase appears to be secreted, in that it is at least partially localized in the apoplast of shoots. The native enzyme exhibits a high degree of resistance to degradation by proteinase K, trypsin/chymostrypsin, thermolysin, and Staphylococcus aureus V8 protease. It does not appear to be a high-mannose-type glycoprotein. Common cell wall constituents (e.g. β-glucan) are not substrates of the enzyme. A very low amount of this α-amylase appears to be associated with chloroplasts; however, it is unclear whether this activity is contamination or α-amylase which is integrally associated with the chloroplast.  相似文献   

18.
Lotus (Nelumbo nucifera Gaertn.) rhizome starch granules have an elongated oval shape with the hilum located at one end. The morphologic characteristics were used as a direction anchor to study the heterogeneity of molecular organization of starch granules using microscopy before and after partial digestion by bacterial α-amylase (Bacillus sp.) The partially digested granule showed a single, big eroded hole at the end distant from the hilum. The enzyme-attacked end was revealed to be the loosely packed end and to be the weak point for enzyme hydrolysis. The α-amylase hydrolyzed the loosely packed central part of the granule faster than the densely packed periphery, and left an empty shell with a fish-bone-like tunnel inside. The periphery was more resistant to amylase hydrolysis and had strong birefringence. For the whole starch granule, the selectivity of α-amylase hydrolysis was low for the crystalline and amorphous regions and for amylose and amylopectin molecules. This study elucidated that the molecular organization of lotus rhizome starch granules was heterogeneous.  相似文献   

19.
In resting grains of Triumph barley (Hordeum vulgare L. cv Triumph) about 40% of the β-amylase could be extracted with a saline solution, the remaining 60% being in a bound form. During seedling growth (20°C), the bound form was released mainly between days 1 and 3. When a preparation containing bound β-amylase was incubated with an extract made of endosperms separated from germinating grains, release of bound β-amylase took place and could be studied in vitro. The release was almost completely prevented by leupeptin and antipain, specific inhibitors of a group of SH-proteinases, but it was not inhibited by pepstatin A or EDTA, which inhibit some other barley proteinases. It is thus very likely that in a whole grain, at least the bulk of the bound β-amylase is released by the proteolytic action of one or several SH-proteinases. When the bound β-amylase was released by papain, its molecular weight was about 5000 daltons smaller than that of β-amylase released by dithiothreitol. This indicates that the release is due to removal of a sequence of β-amylase itself. A similar decrease in size took place during seedling growth. Bound β-amylase showed some activity against native starch and it hydrolyzed maltotetraose at a rate that was about 70% of the rate the same amount of bound β-amylase gave after release. Bound β-amylase is thus not inactive and it is likely that the slower rate of hydrolysis is due to steric hindrances which prevent substrates from reaching the active site.  相似文献   

20.
We have examined the occurrence/disappearance, tissue location, and posttranslational modification of β-amylase proteins in rye (Secale cereale L.) kernels at three physiological stages (development, maturity, germination) with a normal inbred line and a mutant line exhibiting a high but incomplete β-amylase deficiency. This deficiency corresponds to a lack of accumulation of β-amylase activity in the endosperm and does not affect the level of activity in the outer pericarp and green tissues as compared to the normal line. Two antigenically related but distinct β-amylases (I and II) were detected in the normal line (II being the major constituent) and only one (I) in the mutant line. I and II display very similar electrophoretic polymorphism. In both lines, I appears to be ubiquitous, although it disappears from the outer pericarp during ripening. Antigen II was present only in the normal line and appears to be specific for the endosperm and perhaps for the maternal green tissues of the seed. Posttranslational modifications occurring during germination, which are mimicked by the action of papain, affect II but not I. The two groups of β-amylases are discussed in relation to recent reports indicating the presence of two types of β-amylase with different functions and gene loci in barley and wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号