首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage T4 gene 43 codes for the viral DNA polymerase. We report here the sequence of gene 43 and about 70 nucleotides of 5'- and 3'-flanking sequences, determined by both DNA and RNA sequencing. We have also purified T4 DNA polymerase from T4 infected Escherichia coli and from E. coli containing a gene 43 overexpression vector. A major portion of the deduced amino acid sequence has been verified by peptide mapping and sequencing of the purified DNA polymerase. All these results are consistent with T4 DNA polymerase having 898 amino acids with a calculated Mr = 103,572. Comparison of the primary structure of T4 DNA polymerase with the sequence of other procaryotic and eucaryotic DNA polymerases indicates that T4 DNA polymerase has regions of striking similarity with animal virus DNA polymerases and human DNA polymerase alpha. Surprisingly, T4 DNA polymerase shares only limited similarity with E. coli polymerase I and no detectable similarity with T7 DNA polymerase. Based on the location of specific mutations in T4 DNA polymerase and the conservation of particular sequences in T4 and eucaryotic DNA polymerases, we propose that the NH2-terminal half of T4 DNA polymerase forms a domain that carries out the 3'----5' exonuclease activity whereas the COOH-terminal half of the polypeptide contains the dNTP-binding site and is necessary for DNA synthesis.  相似文献   

2.
L Blanco  A Bernad  M Salas 《Gene》1992,112(1):139-144
The complete amino acid (aa) alignment of the N-terminal domain of 33 DNA-dependent DNA polymerases encompassing the putative segments Exo I, Exo II and Exo III, proposed by Bernad et al. [Cell 59 (1989) 219-228] to form a conserved 3'-5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases, allowed us to identify and/or correct some of the most conserved segments (Exo I, II and III) in certain DNA polymerases. In particular, the aa region of T4 DNA polymerase and other eukaryotic (viral and cellular) DNA polymerases previously proposed as Exo I segment 1, did not align with the Exo I segment of Escherichia coli DNA polymerase I (PolI)-like and protein-primed DNA polymerases; instead, a new conserved region of aa similarity was identified in T4 DNA polymerase and eukaryotic (viral and cellular) DNA polymerases as their corresponding Exo I segment. Therefore, according to our alignment, the recently reported T4 DNA polymerase site-directed mutants, D189A and E191A [Reha-Krantz et al., Proc. Natl. Acad. Sci. USA 88 (1991) 2417-2421], do not correspond to what we now consider the critical Exo I motif of PolI. As discussed in this communication, the functional importance of conserved segments Exo I, Exo II and Exo III is supported by site-directed mutagenesis in PolI, and in phi 29, T7 and delta(Sc) DNA polymerases. Furthermore, genetically selected T4 DNA polymerase mutator mutants form two main clusters, centered in the conserved segment Exo III and in the newly identified Exo I segment.  相似文献   

3.
Bacteriophage T4 rnh encodes an RNase H that removes ribopentamer primers from nascent DNA chains during synthesis by the T4 multienzyme replication system in vitro (H. C. Hollingsworth and N. G. Nossal, J. Biol. Chem. 266:1888-1897, 1991). This paper demonstrates that either T4 RNase HI or Escherichia coli DNA polymerase I (Pol I) is essential for phage replication. Wild-type T4 phage production was not diminished by the polA12 mutation, which disrupts coordination between the polymerase and the 5'-to-3' nuclease activities of E. coli DNA Pol I, or by an interruption in the gene for E. coli RNase HI. Deleting the C-terminal amino acids 118 to 305 from T4 RNase H reduced phage production to 47% of that of wild-type T4 on a wild-type E. coli host, 10% on an isogenic host defective in RNase H, and less than 0.1% on a polA12 host. The T4 rnh(delta118-305) mutant synthesized DNA at about half the rate of wild-type T4 in the polA12 host. More than 50% of pulse-labelled mutant DNA was in short chains characteristic of Okazaki fragments. Phage production was restored in the nonpermissive host by providing the T4 rnh gene on a plasmid. Thus, T4 RNase H was sufficient to sustain the high rate of T4 DNA synthesis, but E. coli RNase HI and the 5'-to-3' exonuclease of Pol I could substitute to some extent for the T4 enzyme. However, replication was less accurate in the absence of the T4 RNase H, as judged by the increased frequency of acriflavine-resistant mutations after infection of a wild-type host with the T4 rnh (delta118-305) mutant.  相似文献   

4.
Haemophilus influenzae was found to produce a DNA polymerase that was similar to polymerase I of Escherichia coli. E. coli polA mutants were used as backgrounds for the selection of H. influenzae polA suppressor genes. Six different H. influenzae fragments were isolated that could suppress E. coli polA mutations. None of the suppressors appeared to encode the H. influenzae equivalent of the E. coli polA gene. One type of clone, represented by pGW41, caused a polymerase I activity to appear in a suppressed polA1 mutant. Plasmids from the pGW41 class contained two genes (pol-2 and pol-3) that were both required for polA suppression. Mutated nonsuppressing derivatives of the pGW41 class were used to create H. influenzae mutants that were deficient in polymerase I.  相似文献   

5.
Monoclonal antibodies directed against the alpha subunit of the DNA polymerase III holoenzyme (1) of E. coli were tested for cross-reactivity with a variety of polymerases. We found that one monoclonal antibody bound to E. coli DNA polymerase I as well as to DNA polymerase III. A weaker, but specific, interaction was also detected with T4 DNA polymerase. We exploited the proteolysis procedure developed by Setlow, Brutlag and Kornberg (2) to determine which domain of DNA polymerase I contained the conserved epitope. Contrary to expectations, it was not found in the polymerase domain, but in the 5'----3' exonuclease domain. This reveals a sequence or structure, sufficiently important to be conserved among these polymerases, that is not directly involved in the polymerization reaction.  相似文献   

6.
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.  相似文献   

7.
We used the known sequence of the Saccharomyces cerevisiae DNA polymerase gamma to clone the genes or cDNAs encoding this enzyme in two other yeasts, Pychia pastoris and Schizosaccharomyces pombe, and one higher eukaryote, Xenopus laevis. To confirm the identity of the final X.laevis clone, two antisera raised against peptide sequences were shown to react with DNA polymerase gamma purified from X.laevis oocyte mitochondria. A developmentally regulated 4.6 kb mRNA is recognized on Northern blots of oocyte RNA using the X.laevis cDNA. Comparison of the four DNA polymerase gamma gene sequences revealed several highly conserved sequence blocks, comprising an N-terminal 3'-->5'exonuclease domain and a C-terminal polymerase active center interspersed with gamma-specific gene sequences. The consensus sequences for the DNA polymerase gamma exonuclease and polymerase domains show extensive sequence similarity to DNA polymerase I from Escherichia coli. Sequence conservation is greatest for residues located near the active centers of the exo and pol domains of the E.coli DNA polymerase I structure. The domain separating the exonuclease and polymerase active sites is larger in DNA polymerase gamma than in other members of family A (DNA polymerase I-like) polymerases. The S.cerevisiae DNA polymerase gamma is atypical in that it includes a 240 residue C-terminal extension that is not found in the other members of the DNA polymerase gamma family, or in other family A DNA polymerases.  相似文献   

8.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

9.
Alignment of the amino acid (aa) sequences of T7 phage DNA polymerase (DPase), E. coli DNA polymerase I (Pol I) and MS2 phage RNA replicase beta subunit (MS2 Repl) were established by computer-aided methods. The results showed that the entire length (aa's 16-704) of T7 DPase is homologous to Pol I aa's 207-928(C-term) with 21.5% aa identity, and that domains I (aa's-1-311) and II (312-451(C-term] were found to be homologous to each other and to N-terminal region of T7 DPase (aa's 1-250). Thus these enzymes and domains are homologous to one another and must have evolved from a co-ancestral enzyme.  相似文献   

10.
11.
T4+ exhibits increased ultraviolet sensitivity on derivatives of Escherichia coli K12 or B lacking deoxyribonucleic acid (DNA) polymerase I. However, the sensitivity of T4v is not affected by the absence of host DNA polymerase. T4x and T4y also show increased sensitivity on DNA polymerase-deficient strains, but to a lesser extent than observed with wild-type T4. When T4x or T4y, but not T4+, are plated on a double mutant lacking both DNA polymerase and the uvrA gene product, a partial suppression of the polymerase effect is observed. Host ligase appears to be able to suppress to some extent the T4y phenotype but has no effect on wild-type T4 or other T4 mutants. T4xv incubated in E. coli B or B(s-1) in the presence of chloramphenicol (50 mug/ml) shows increased resistance over directly plated irradiated phage. Increased survival under the same conditions was not observed with T4+ or other T4 mutants. The repair of X-ray-damaged T4 was investigated by examining survival curves of T4+, T4x, T4y, T4ts43, and T4ts30. The repair processes were further defined by observing the effects of plating irradiated phage on various hosts including strains lacking DNA polymerase I or polynucleotide ligase. Two classes of effects were observed. Firstly, the x and y gene products seem to be involved in a repair system utilizing host ligase. Secondly, in the absence of host DNA polymerase, phage sensitivity is increased in an unknown manner which is enhanced by the presence of host uvrA gene product.  相似文献   

12.
Structural gene mutants were cloned and exploited to identify the major catalytic domains of Bacillus subtilis DNA polymerase III (BsPolIII), a 162.4-kDa [1437 amino acids (aa)] polymerase: 3'-5' exonuclease (Exo) required for replicative DNA synthesis. Analysis of the sequence, mutagenicity, and catalytic behavior of natural and site-directed point mutants of BsPolIII unequivocally located the domain involved in exonuclease catalysis within a 155-aa residue segment displaying homology with the Exo domain of Escherichia coli DNA polymerase I. Sequence analysis of four structural gene mutations which specifically alter then enzyme's reactivity to the inhibitory dGTP analog, 6-(p-hydroxyphenylhydrazino)uracil, and the inhibitory arabinonucleotide, araCTP, defined a domain (Pol) involved in dNTP binding. The Pol domain was in the C-terminal fourth of the enzyme within a 98-aa segment spanning aa 1175-1273. The primary structure of the domain was unique, displaying no obvious conservation in any other DNA polymerase, including the distantly related PolIIIs of the Gram- organisms, E. coli and Salmonella typhimurium.  相似文献   

13.
14.
15.
16.
In Vitro Packaging of UV Radiation-Damaged DNA from Bacteriophage T7   总被引:11,自引:3,他引:8       下载免费PDF全文
When DNA from bacteriophage T7 is irradiated with UV light, the efficiency with which this DNA can be packaged in vitro to form viable phage particles is reduced. A comparison between irradiated DNA packaged in vitro and irradiated intact phage particles shows almost identical survival as a function of UV dose when Escherichia coli wild type or polA or uvrA mutants are used as the host. Although uvrA mutants perform less host cell reactivation, the polA strains are identical with wild type in their ability to support the growth of irradiated T7 phage or irradiated T7 DNA packaged in vitro into complete phage. An examination of in vitro repair performed by extracts of T7-infected E.coli suggests that T7 DNA polymerase may substitute for E. coli DNA polymerase I in the resynthesis step of excision repair. Also tested was the ability of a similar in vitro repair system that used extracts from uninfected cells to restore biological activity of irradiated DNA. When T7 DNA damaged by UV irradiation was treated with an endonuclease from Micrococcus luteus that is specific for pyrimidine dimers and then was incubated with an extract of uninfected E. coli capable of removing pyrimidine dimers and restoring the DNA of its original (whole genome size) molecular weight, this DNA showed a higher packaging efficiency than untreated DNA, thus demonstrating that the in vitro repair system partially restored the biological activity of UV-damaged DNA.  相似文献   

17.
Genomic DNA encompassing polC, the structural gene specifying Bacillus subtilis DNA polymerase III (PolIII), was sequenced and found to contain a 4311-bp open reading frame (ORF) encoding a 162.4-kDa polypeptide of 1437 amino acids (aa). The ORF was engineered into an Escherichia coli expression plasmid under the control of the coliphage lambda repressor. Derepression of E. coli transformants carrying the recombinant vector resulted in the high-level synthesis of a recombinant DNA polymerase indistinguishable from native PolIII. N-terminal aa sequence analysis of the recombinant polymerase unequivocally identified the 4311-bp ORF as that of polC. Comparative aa sequence analysis indicated significant homology of the B. subtilis enzyme with the catalytic alpha subunit of the E. coli PolIII and, with the exception of an exonuclease domain, little homology with other DNA polymerases. The respective sequences of the mutant polC alleles, dnaF and ts-6, were identified, and the expression of specifically truncated forms of polC was exploited to assess the dependence of polymerase activity on the structure of the enzyme's C terminus.  相似文献   

18.
Hepatitis B virus: DNA polymerase activity of deletion mutants   总被引:8,自引:0,他引:8  
The hepadnavirus P gene product is a multifunctional protein with priming, DNA- and RNA-dependent DNA polymerase, and RNase H activities. Nested N- or C-terminal deletion mutations and deletions of domain(s) in human HBV polymerase have been made. Wild-type and deletion forms of MBP-fused HBV polymerase were expressed in E. coli, purified by amylose column chromatography, and the DNA-dependent DNA polymerase activities of the purified proteins were compared. Deletion of the terminal protein or spacer regions reduced enzyme activity to 70%, respectively. However, deletion of the RNase H domain affected polymerase activity more than that of the terminal protein or spacer region. The polymerase domain alone or the N-terminal deletion of the polymerase domain still exhibited enzymatic activity. In this report, it is demonstrated that the minimal domain for the polymerizing activity of the HBV polymerase is smaller than the polymerase domain.  相似文献   

19.
An attempt to unify the structure of polymerases   总被引:48,自引:0,他引:48  
With the great availability of sequences from RNA- and DNA-dependent RNA and DNA polymerases, it has become possible to delineate a few highly conserved regions for various polymerase types. In this work a DNA polymerase sequence from bacteriophage SPO2 was found to be homologous to the polymerase domain of the Klenow fragment of polymerase I from Escherichia coli, which is known to be closely related to those from Staphylococcus pneumoniae, Thermus aquaticus and bacteriophages T7 and T5. The alignment of the SPO2 polymerase with the other five sequences considerably narrowed the conserved motifs in these proteins. Three of the motifs matched reasonably all the conserved motifs of another DNA polymerase type, characterized by human polymerase alpha. It is also possible to find these three motifs in monomeric DNA-dependent RNA polymerases and two of them in DNA polymerase beta and DNA terminal transferases. These latter two motifs also matched two of the four motifs recently identified in 84 RNA-dependent polymerases. From the known tertiary architecture of the Klenow fragment of E. coli pol I, a spatial arrangement can be implied for these motifs. In addition, numerous biochemical experiments suggesting a role for the motifs in a common function (dNTP binding) also support these inferences. This speculative hypothesis, attempting to unify polymerase structure at least locally, if not globally, under the pol I fold, should provide a useful model to direct mutagenesis experiments to probe template and substrate specificity in polymerases.  相似文献   

20.
Ward DG  Brewer SM  Cornes MP  Trayer IP 《Biochemistry》2003,42(34):10324-10332
Phosphorylation of the unique N-terminal extension of cardiac troponin I (TnI) by PKA modulates Ca(2+) release from the troponin complex. The mechanism by which phosphorylation affects Ca(2+) binding, however, remains unresolved. To investigate this question, we have studied the interaction of a fragment of TnI consisting of residues 1-64 (I1-64) with troponin C (TnC) by isothermal titration microcalorimetry and cross-linking. I1-64 binds extremely tightly to the C-terminal domain of TnC and weakly to the N-terminal domain. Binding to the N-domain is weakened further by phosphorylation. Using the heterobifunctional cross-linker benzophenone-4-maleimide and four separate cysteine mutants of I1-64 (S5C, E10C, I18C, R26C), we have probed the protein-protein interactions of the N-terminal extension. All four I1-64 mutants cross-link to the N-terminal domain of TnC. The cross-linking is enhanced by Ca(2+) and reduced by phosphorylation. By introducing the same monocysteine mutations into full-length TnI, we were able to probe the environment of the N-terminal extension in intact troponin. We find that the full length of the extension lies in close proximity to both TnC and troponin T (TnT). Ca(2+) enhances the cross-linking to TnC. Cross-linking to both TnC and TnT is reduced by prior phosphorylation of the TnI. In binary complexes the mutant TnIs cross-link to both the isolated TnC N-domain and whole TnC. Cyanogen bromide digestion of the covalent TnI-TnC complex formed from intact troponin demonstrates that cross-linking is predominantly to the N-terminal domain of TnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号