首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Peroxisomes: Organelles at the crossroads   总被引:6,自引:0,他引:6  
Recent years have seen remarkable progress in our understanding of the function of peroxisomes in higher and lower eukaryotes. Combined genetic and biochemical approaches have led to the identification of many genes required for the biogenesis of this organelle. This review summarizes recent, rather surprising, results and discusses how they can be incorporated into the current view of peroxisome biogenesis.  相似文献   

3.
4.
5.
6.
7.
8.
FKBPs: at the crossroads of folding and transduction.   总被引:9,自引:0,他引:9  
  相似文献   

9.
10.
11.
12.
Peptide libraries offer a valuable means for providing functional information regarding protein-modifying enzymes and protein interaction domains. Library approaches have become increasingly useful as high-throughput strategies for the analysis of large numbers of new proteins identified as a result of genome-sequencing efforts. Recent developments in the field have produced faster methods with broadened applicability. Crucially, new computational and biochemical tools have emerged that facilitate identification of interaction partners and substrates for proteins on the basis of their peptide selectivity profiles. Such combinations of proteomics-scale experimental approaches with bioinformatics tools hold great promise for the elucidation of protein interaction networks and signal transduction pathways in living cells.  相似文献   

13.
14.
The family of docker proteins containing phosphotyrosine-binding (PTB) domains appears to represent a family of critically positioned and exquisitely controlled signalling proteins that relay signals from the activated receptors to downstream pathways. These proteins all have a membrane attachment domain, a PTB domain that targets the protein to a subset of receptors and a number of phosphorylatable tyrosines that dock other signalling proteins. Evidence is accruing that suggests that the PTB domain has evolved from a pleckstrin homology (PH) domain to bind to a range of sequences that, while bestowing specificity, allows switching of the docker protein between receptors or signalling systems. The history of the PTB domain and how it influences the participation of docker protein in various signalling pathways are discussed.  相似文献   

15.
16.
17.
18.
19.
20.
Report on the meeting: Frontiers in Cell Biology and Medicine, University of York, UK, 26-29 September 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号