首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the gene encoding herpes simplex virus thymidine kinase (HSV-TK) in eukaryotic cells confers sensitivity to antiherpetic drugs such as acyclovir and ganciclovir. This property has been proposed for use in gene therapy approaches to kill either cancer cells or HIV-infected cells. Several animal experiments have shown the regression of tumors after in vivo transfer of the HSV-TK gene followed by ganciclovir treatment. Furthermore, CD4+T cells harboring the HSV-TK gene under the control of HIV regulatory sequences are protected from HIV spreading in the presence of acyclovir. Thus, the HSV-TK gene has potential applications in gene therapy for the treatment of cancer and HIV infection.  相似文献   

2.

Introduction

Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02).

Methods

The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model.

Results

Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks.

Conclusions

These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.  相似文献   

3.

Introduction

Targeting the CD20 antigen has been a successful therapeutic intervention in the treatment of rheumatoid arthritis (RA). However, in some patients with an inadequate response to anti-CD20 therapy, a persistence of CD20- plasmablasts is noted. The strong expression of CD319 on CD20- plasmablast and plasma cell populations in RA synovium led to the investigation of the potential of CD319 as a therapeutic target.

Methods

PDL241, a novel humanized IgG1 monoclonal antibody (mAb) to CD319, was generated and examined for its ability to inhibit immunoglobulin production from plasmablasts and plasma cells generated from peripheral blood mononuclear cells (PBMC) in the presence and absence of RA synovial fibroblasts (RA-SF). The in vivo activity of PDL241 was determined in a human PBMC transfer into NOD scid IL-2 gamma chain knockout (NSG) mouse model. Finally, the ability of PDL241 to ameliorate experimental arthritis was evaluated in a collagen-induced arthritis (CIA) model in rhesus monkeys.

Results

PDL241 bound to plasmablasts and plasma cells but not naïve B cells. Consistent with the binding profile, PDL241 inhibited the production of IgM from in vitro PBMC cultures by the depletion of CD319+ plasmablasts and plasma cells but not B cells. The activity of PDL241 was dependent on an intact Fc portion of the IgG1 and mediated predominantly by natural killer cells. Inhibition of IgM production was also observed in the human PBMC transfer to NSG mouse model. Treatment of rhesus monkeys in a CIA model with PDL241 led to a significant inhibition of anti-collagen IgG and IgM antibodies. A beneficial effect on joint related parameters, including bone remodeling, histopathology, and joint swelling was also observed.

Conclusions

The activity of PDL241 in both in vitro and in vivo models highlights the potential of CD319 as a therapeutic target in RA.  相似文献   

4.

Background

The gene delivery vector for DNA-based therapy should ensure its transfection efficiency and safety for clinical application. The Micro-Linear vector (MiLV) was developed to improve the limitations of traditional vectors such as viral vectors and plasmids.

Methods

The MiLV which contained only the gene expression cassette was amplified by polymerase chain reaction (PCR). Its cytotoxicity, transfection efficiency in vitro and in vivo, duration of expression, pro-inflammatory responses and potential application for Epstein-Barr virus (EBV) positive tumors were evaluated.

Results

Transfection efficiency for exogenous genes transferred by MiLV was at least comparable with or even greater than their corresponding plasmids in eukaryotic cell lines. MiLV elevated the expression and prolonged the duration of genes in vitro and in vivo when compared with that of the plasmid. The in vivo pro-inflammatory response of MiLV group was lower than that of the plasmid group. The MEKK1 gene transferred by MiLV significantly elevated the sensitivity of B95-8 cells and transplanted tumor to the treatment of Ganciclovir (GCV) and sodium butyrate (NaB).

Conclusions

The present study provides a safer, more efficient and stable MiLV gene delivery vector than plasmid. These advantages encourage further development and the preferential use of this novel vector type for clinical gene therapy studies.  相似文献   

5.
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.  相似文献   

6.
IntroductionPathological bone changes differ considerably between inflammatory arthritic diseases and most studies have focused on bone erosion. Collagen-induced arthritis (CIA) is a model for rheumatoid arthritis, which, in addition to bone erosion, demonstrates bone formation at the time of clinical manifestations. The objective of this study was to use this model to characterise the histological and molecular changes in bone remodelling, and relate these to the clinical disease development.MethodsA histological and gene expression profiling time-course study on bone remodelling in CIA was linked to onset of clinical symptoms. Global gene expression was studied with a gene chip array system.ResultsThe main histopathological changes in bone structure and inflammation occurred during the first two weeks following the onset of clinical symptoms in the joint. Hereafter, the inflammation declined and remodelling of formed bone dominated.Global gene expression profiling showed simultaneous upregulation of genes related to bone changes and inflammation in week 0 to 2 after onset of clinical disease. Furthermore, we observed time-dependent expression of genes involved in early and late osteoblast differentiation and function, which mirrored the histopathological bone changes. The differentially expressed genes belong to the bone morphogenetic pathway (BMP) and, in addition, include the osteoblast markers integrin-binding sialoprotein (Ibsp), bone gamma-carboxyglutamate protein (Bglap1), and secreted phosphoprotein 1 (Spp1). Pregnancy-associated protein A (Pappa) and periostin (Postn), differentially expressed in the early disease phase, are proposed to participate in bone formation, and we suggest that they play a role in early bone formation in the CIA model. Comparison to human genome-wide association studies (GWAS) revealed differential expression of several genes associated with human arthritis.ConclusionsIn the CIA model, bone formation in the joint starts shortly after onset of clinical symptoms, which results in bony fusion within one to two weeks. This makes it a candidate model for investigating the relationship between inflammation and bone formation in inflammatory arthritis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0531-7) contains supplementary material, which is available to authorized users.  相似文献   

7.
Diseases such as degenerative or rheumatoid arthritis are accompanied by joint destruction. Clinically applied tissue engineering technologies like autologous chondrocyte implantation, matrix-assisted chondrocyte implantation, or in situ recruitment of bone marrow mesenchymal stem cells target the treatment of traumatic defects or of early osteoarthritis. Inflammatory conditions in the joint hamper the application of tissue engineering during chronic joint diseases. Here, most likely, cartilage formation is impaired and engineered neocartilage will be degraded. Based on the observations that mesenchymal stem cells (a) develop into joint tissues and (b) in vitro and in vivo show immunosuppressive and anti-inflammatory qualities indicating a transplant-protecting activity, these cells are prominent candidates for future tissue engineering approaches for the treatment of rheumatic diseases. Tissue engineering also provides highly organized three-dimensional in vitro culture models of human cells and their extracellular matrix for arthritis research.  相似文献   

8.
Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS) complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS). In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra) combined with insulin-like growth factor-1 (IGF-1) in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG) and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO) synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.  相似文献   

9.
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.  相似文献   

10.
The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.  相似文献   

11.
Inhibition of tumour necrosis factor (TNF)-alpha with biological molecules has proven an effective treatment for rheumatoid arthritis, achieving a 20% improvement in American College of Rheumatology score in up to 65% of patients. The main drawback to these and many other biological treatments has been their expense, which has precluded their widespread application. Biological molecules could alternatively be delivered by gene therapy as the encoding DNA. We have developed novel plasmid vectors termed pGTLMIK and pGTTMIK, from which luciferase and a dimeric TNF receptor II (dTNFR) are respectively expressed in a doxycycline (Dox)-regulated manner. Regulated expression of luciferase from the self-contained plasmid pGTLMIK was examined in vitro in a variety of cell lines and in vivo following intramuscular delivery with electroporation in DBA/1 mice. Dox-regulated expression of luciferase from pGTLMIK of approximately 1,000-fold was demonstrated in vitro, and efficient regulation was observed in vivo. The vector pGTTMIK encoding dTNFR was delivered by the same route with and without administration of Dox to mice with collagen-induced arthritis. When pGTTMIK was delivered after the onset of arthritis, progression of the disease in terms of both paw thickness and clinical score was inhibited when Dox was also administered. Vectors with similar regulation characteristics may be suitable for clinical application.  相似文献   

12.
IntroductionInflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.MethodsExpression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.ResultsRA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.ConclusionsThese data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.  相似文献   

13.
14.
15.

Introduction

Rheumatoid arthritis (RA) is a systemic disease manifested by chronic inflammation in multiple articular joints, including the knees and small joints of the hands and feet. We have developed a unique modification to a clinically accepted method for delivering therapies directly to the synovium. Our therapy is based on our previous discovery of an analog peptide (A9) with amino acid substitutions made at positions 260 (I to A), 261 (A to B), and 263 (F to N) that could profoundly suppress immunity to type II collagen (CII) and arthritis in the collagen-induced arthritis model (CIA).

Methods

We engineered an adenoviral vector to contain the CB11 portion of recombinant type II collagen and used PCR to introduce point mutations at three sites within (CII124-402, 260A, 261B, 263D), (rCB11-A9) so that the resulting molecule contained the A9 sequence at the exact site of the wild-type sequence.

Results

We used this construct to target intra-articular tissues of mice and utilized the collagen-induced arthritis model to show that this treatment strategy provided a sustained, local therapy for individual arthritic joints, effective whether given to prevent arthritis or as a treatment. We also developed a novel system for in vivo bioimaging, using the firefly luciferase reporter gene to allow serial bioluminescence imaging to show that luciferase can be detected as late as 18 days post injection into the joint.

Conclusions

Our therapy is unique in that we target synovial cells to ultimately shut down T cell-mediated inflammation. Its effectiveness is based on its ability to transform potential inflammatory T cells and/or bystander T cells into therapeutic (regulatory-like) T cells which secrete interleukin (IL)-4. We believe this approach has potential to effectively suppress RA with minimal side effects.  相似文献   

16.
Endoxifen has recently been identified as the predominant active metabolite of tamoxifen and is currently being developed as a novel hormonal therapy for the treatment of endocrine sensitive breast cancer. Based on past studies in breast cancer cells and model systems, endoxifen classically functions as an anti-estrogenic compound. Since estrogen and estrogen receptors play critical roles in mediating bone homeostasis, and endoxifen is currently being implemented as a novel breast cancer therapy, we sought to comprehensively characterize the in vivo effects of endoxifen on the mouse skeleton. Two month old ovariectomized C57BL/6 mice were treated with vehicle or 50 mg/kg/day endoxifen hydrochloride via oral gavage for 45 days. Animals were analyzed by dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, micro-computed tomography and histomorphometry. Serum from control and endoxifen treated mice was evaluated for bone resorption and bone formation markers. Gene expression changes were monitored in osteoblasts, osteoclasts and the cortical shells of long bones from endoxifen treated mice and in a human fetal osteoblast cell line. Endoxifen treatment led to significantly higher bone mineral density and bone mineral content throughout the skeleton relative to control animals. Endoxifen treatment also resulted in increased numbers of osteoblasts and osteoclasts per tissue area, which was corroborated by increased serum levels of bone formation and resorption markers. Finally, endoxifen induced the expression of osteoblast, osteoclast and osteocyte marker genes. These studies are the first to examine the in vivo and in vitro impacts of endoxifen on bone and our results demonstrate that endoxifen increases cancellous as well as cortical bone mass in ovariectomized mice, effects that may have implications for postmenopausal breast cancer patients.  相似文献   

17.
Resistance formation is one of the major hurdles in cancer therapy. Metronomic anti-angiogenic treatment of xenografted prostate cancer tumors in severe combined-immunodeficiency (SCID) mice with cyclophosphamide (CPA) results in the appearance of resistant tumors. To investigate the complex molecular changes occurring during resistance formation, we performed a comprehensive gene expression analysis of the resistant tumors in vivo. We observed a multitude of differentially expressed genes, e.g., PAS domain containing protein 1, annexin A3 (ANXA3), neurotensin, or plasminogen activator tissue (PLAT), when comparing resistant to in vivo passaged tumor samples. Furthermore, tumor cells from in vivo and in vitro conditions showed a significant difference in target gene expression. We assigned the differentially expressed genes to functional pathways like axon guidance, steroid biosynthesis, and complement and coagulation cascades. Most of these genes were involved in anti-coagulation. Up-regulation of anticoagulatory ANXA3 and PLAT and down-regulation of PLAT inhibitor serpin peptidase inhibitor clade A were validated by quantitative real-time polymerase chain reaction. In contrast, coagulation factor F3 was upregulated, accompanied by the expression of an altered gene product. These findings give insights into the resistance mechanisms of metronomic CPA treatment, suggesting an important role of anti-coagulation in resistance formation.  相似文献   

18.

Introduction

Activation of the inflammasome has been implicated in the pathology of various autoinflammatory and autoimmune diseases. While the NLRP3 inflammasome has been linked to arthritis progression, little is known about its synovial regulation or contribution to joint histopathology. Regulators of inflammation activation, such as interleukin (IL)-10, may have the potential to limit the inflammasome-driven arthritic disease course and associated structural damage. Hence, we used IL-10-deficient (IL-10KO) mice to assess NLRP3 inflammasome-driven arthritic pathology.

Methods

Antigen-induced arthritis (AIA) was established in IL-10KO mice and wild-type controls. Using histological and radiographic approaches together with quantitative real-time PCR of synovial mRNA studies, we explored the regulation of inflammasome components. These were combined with selective blocking agents and ex vivo investigative studies in osteoclast differentiation assays.

Results

In AIA, IL-10KO mice display severe disease with increased histological and radiographic joint scores. Here, focal bone erosions were associated with increased tartrate-resistant acid phosphatase (TRAP)-positive cells and a localized expression of IL-1β. When compared to controls, IL-10KO synovium showed increased expression of Il1b, Il33 and NLRP3 inflammasome components. Synovial Nlrp3 and Casp1 expression further correlated with Acp5 (encoding TRAP), while neutralization of IL-10 receptor signaling in control mice caused increased expression of Nlrp3 and Casp1. In ex vivo osteoclast differentiation assays, addition of exogenous IL-10 or selective blockade of the NLRP3 inflammasome inhibited osteoclastogenesis.

Conclusions

These data provide a link between IL-10, synovial regulation of the NLRP3 inflammasome and the degree of bone erosions observed in inflammatory arthritis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0419-y) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Background

Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model.

Methodology/Principal Findings

We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) and vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk) fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001) compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect.

Conclusions/Significance

In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery by gammaretroviral vectors is in line with the results obtained in clinical therapy for GBM and thus confirms the high reproducibility of the invasive glioma animal model for translational research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号