首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of a long-term examination of variation in adult density in the least killifish, Heterandria formosa, and the associations among adult density and a variety of ecological factors. We used data from 11 populations of H. formosa in Northwest Florida, collected between 2000 and 2010, to examine the relationships among temporal and spatial variation in adult density and (1) the composition of the aquatic fauna community among habitats (springs, ponds, and tidal marshes) where H. formosa are found, (2) an index of predation pressure and (3) the sampling season, distance from shore (cm), water depth (cm), and aquatic vegetation cover (%) in throw traps at each sampling event. We found clear evidence that adult densities of H. formosa vary widely but consistently among populations, with greater spatial variation than temporal variation in density estimates. Site identity explained most of the variation in density among populations, and there was no long-term consistent association of variation in density with different habitats; sites of the same habitat type were as likely to have characteristically different densities as were sites of different habitat types. Average adult densities of H. formosa increased as aquatic vegetation cover increased and as the index of predation pressure decreased, however assemblage structure was not a strong predictor of density. These results show that despite marked community, abiotic and biotic distinctions between habitat types, location-specific variation was the predominant signal in these data.  相似文献   

2.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

3.
Studies of the adaptive significance of variation among conspecific populations often focus on a single ecological factor. However, habitats rarely differ in only a single ecological factor, creating a challenge for identifying the relative importance of the various ecological factors that might be maintaining local adaptation. Here we investigate the ecological factors associated with male body shape variation among nine populations of the poeciliid fish, Heterandria formosa, from three distinct habitats and combine those results with a laboratory study of three of those populations to assess the contributions of genetic and environmental influences to shape variation. Field‐collected animals varied principally in three ways: the orientation of the gonopodium, the intromittent organ; the degree of body depth and streamlining; and the shape of the tail musculature. Fish collected in the spring season were larger and had a more anteriorly positioned gonopodium than fish collected in autumn. Fish collected from lotic springs were larger and more streamlined than those collected from lentic ponds or tidal marshes. Some of the variation in male shape among populations within habitats was associated with population‐level variation in species richness, adult density, vegetative cover, predation risk, and female standard length. Population‐level differences among males in body size, position of the gonopodium, and shape of the tail musculature were maintained among males reared in a common environment. In contrast, population variation in the degree of streamlining was eliminated when males were reared in a common environment. These results illustrate the complicated construction of multivariate phenotypic variation and suggest that different agents of selection have acted on different components of shape.  相似文献   

4.
Arvanitis L  Wiklund C  Ehrlén J 《Oecologia》2007,152(2):275-285
Polyploidization has been suggested as one of the most common mechanisms for plant diversification. It is often associated with changes in several morphological, phenological and ecological plant traits, and therefore has the potential to alter insect–plant interactions. Nevertheless, studies evaluating the effect of plant polyploidy on interspecific interactions are still few. We investigated pre-dispersal seed predation by the butterfly Anthocharis cardamines in 195 populations of two ploidy levels of the herb Cardamine pratensis (tetraploid ssp. pratensis, 2n = 30 vs. octoploid ssp. paludosa, 2n = 56–64). We asked if differences in incidence and intensity of predation among populations were related to landscape characteristics, plant ploidy level and population structure. The incidence of the seed predator increased with increasing plant population size and decreasing distance to nearest population occupied by A. cardamines. The intensity of predation decreased with increasing plant population size and was not affected by isolation. Probability of attack decreased with increasing shading, and intensity of predation was higher in grazed than in non-grazed habitats. The attack intensity increased with increasing mean flower number of plant population, but was not affected by flowering phenology. Individuals in tetraploid populations suffered on average from higher levels of seed predation, had higher mean flower number, were less shaded and occurred more often in grazed habitats than octoploid populations. When accounting for differences in habitat preferences between ploidy levels there was no longer a difference in intensity of predation, suggesting that the observed differences in attack rates among populations of the two ploidy levels are mediated by the habitat. Overall, our results suggest that polyploidization is associated with differentiation in habitat preferences and phenotypic traits leading to differences in interspecific interaction among plant populations. This, in turn, may facilitate further divergence of ploidy levels.  相似文献   

5.
Spatio-temporal variation in seed predation may strongly influence both plant population dynamics and selection on plant traits. The intensity of seed predation may depend on a number of factors, but the relative importance of previous predator abundance (“local legacy”), spatial distribution of the host plant, environmental factors and plant characteristics has been explored in few species. We monitored seed predation in the perennial herb Primula farinosa, which is dimorphic for scape length, during 5 consecutive years, in a 10-km × 4-km area comprising 79 P. farinosa populations. A transplant experiment showed that the seed predator, the oligophagous tortricid moth Falseuncaria ruficiliana, was not dispersal limited at the spatial scale corresponding to typical distances between P. farinosa populations. Correlations between population characteristics and incidence and intensity of seed predation varied among years. The incidence of the seed predator was positively correlated with host population size and mean number of flowers, while intensity of seed predation in occupied patches was positively related to the frequency of the long-scaped morph in 2 years and negatively related to host population size in 1 year. In both scape morphs, predation tended to increase with increasing frequency of the long morph. There was no evidence of a local legacy; incidence and intensity of seed predation were not related to the abundance of the seed predator in the population in the previous year. Taken together, the results indicate that among-population variation in seed predation intensity is determined largely by patch selection and that the seed predator’s preference for tall and many-flowered inflorescences may not only affect selection on plant traits within host plant populations, but also the overall intensity of seed predation.  相似文献   

6.
The non-lethal effects of predation can significantly influence animal behavior and population composition. Research has often centered around prey response to predator exposure in the short term, but fewer studies have highlighted the effects of long-term predator exposures. In addition, studies of responses to predation risk are not always calibrated against the ecological history of predation risk in specific populations. We address these gaps by examining the effects of both long- and short-term predator exposure on the behavior of individuals from populations that have different ecological histories of predation risk. We exposed individuals from high-predation and low-predation populations of the live-bearing freshwater poeciliid, Heterandria formosa, to predators to assess changes in male reproductive behavior toward females. We also assessed longer-term reproductive responses by exposing male and female H. formosa to predators at a random time of day, every day, for 30 days. In the presence of a predator, in the short term, males changed the frequency of their behaviors and females varied in their concentration of cortisol, demonstrating immediate responses to the perceived risk. The magnitude of these changes was larger in the population without a long history of predator exposure. However, we found that males and females did not change their reproductive output when exposed to predators over longer periods of time, suggesting that individuals acclimatize to the level of predation risk they experience. These results also suggest that short-term variation in behavior or stress hormone responses should not be used as proxies for long-term responses or fitness effects. Future work should assess both short-term behavior and long-term responses while simultaneously considering the ecological history of populations.  相似文献   

7.
Studies of trait‐mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher‐order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti‐predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de‐stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes. Synthesis Higher‐order predators and habitat complexity can influence behaviour of intermediate species, affecting their consumption of prey through trait‐mediated indirect interactions (TMIIs). However, it is not clear how these factors interact to determine prey population stability. Using functional responses (FRs), relating predator consumption to prey density, we detected TMIIs in a marine system. In simple habitats, TMIIs reduced consumption rates, but FRs remained de‐stabilising for prey populations. In complex habitats, TMIIs strengthened prey regulation with population stabilizing FRs. We thus demonstrate that FRs can assess interactions of environmental and biological cues that result in complex and unexpected outcomes for prey populations.  相似文献   

8.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

9.
1. Behavioural differences among prey species may result from evolutionary adaptations that facilitate coexistence with different predators and influence vulnerability to predators. It has been hypothesised that prey species modify their behaviour in relation to the risk posed by particular predators. 2. We examined the relationship between anti‐predator behaviour and predation risk in five species of larval odonates in combination with three predatory fish species (perch, gudgeon and rudd) that differ in foraging behaviour. The odonates, Platycnemis pennipes, Coenagrion puella, Lestes sponsa, Sympetrum striolatum and Libellula depressa, differ with regard to their life cycle and habitat, including water depth, occurrence in temporary ponds and co‐existence with fish. 3. The odonate species differed in their response to fish: (i) Two species showed a flexible response. Larval C. puella reduced activity in the presence of fish, regardless of species, whereas L. depressa altered their activity only in the presence of gudgeon. (ii) Independent of fish species, all odonates except L. depressa exhibited spatial avoidance of fish. This was interpreted as a more general anti‐predator response. (iii) In some cases the odonates showed no response to predators and their behaviour was thus independent of predation risk. 4. Our results confirm that all odonates responded to the presence of at least some predatory fish, and that some odonate species discriminated between fish species. However, we found no significant correlation between behavioural modifications and predation risk, indicating that anti‐predator responses and predation risk depend on the particular predator and the species being preyed on.  相似文献   

10.
Late-evening gut inspection of a dominant planktivore (smelt) and evaluation of densities, fecundities, and body-size distributions in dominant zooplankton prey (cladocerans) were made in day-to-day sequences in June–July (24 days in 1999 and 24 days in 2000). This was conducted as a field test of the hypothesis that species-specific population densities in cladocerans result from size-selective predation by a dominant fish assumed to be a general predator, switching from one prey to another as relative abundance changes. Little of the expected coincidence has been revealed between population density declines and increased numbers of a given prey in smelt diet. However, the data were consistent with the notion that fish would switch from one prey to another depending on the prey relative abundance (the number of prey a fish would see in its reaction field volume). Each cladoceran population fluctuated around its species-specific density level, lower or higher, depending on individual susceptibility to smelt predation, from 0.2 ind. l–1 in large-bodied Daphnia hyalina and Leptodora kindtii, to 30.0 ind. l–1 in small-bodied Daphnia cucullata andBosmina thersites. In spite of high fish-to-fish and day-to-day variability in both smelt diet and smelt selectivity for different prey, all cladocerans (also copepods and midge larvae) were equally persistent in smelt diet, and smelt selectivity was similar for small- and large-bodied prey categories, but lower for elongated-(Daphnia, Diaphanosoma) than for compact-body (Bosmina, Chydorus) species, when integrated for the entire sampling time. Closer examination of D. cucullata and B. thersites revealed strong smelt selection for later instars and females with greater clutches, showing that size distribution in a cladoceran population might be structured by fish predation in a similar way to that a cladoceran community (species relative abundance) is structured in a lake habitat. The birth-rate-compensation hypothesis is offered to explain why the value of food selectivity index in a planktivorous fish would remain the same for alternate prey categories with similar life-history traits, unless they differ in susceptibility to predation before the time of first reproduction.  相似文献   

11.
Habitat fragmentation alters many ecological processes, including trophic cascades. For example, increased predation pressure along habitat edges has often been observed in fragmented landscapes. Here, we studied how nest predation risk varies along the transition zone between grassland and mixed forest in Central Europe. Using artificial nests, we tested the two mechanisms that are expected to underlie higher predation rates along edges: (1) the matrix effect model that supposes predator penetration from a habitat type with higher predator density to one with lower predator density and (2) the ecotonal effect model that assumes specific predator preferences for habitat edges. Although our results do not fully support either of these scenarios, our data show high temporal instability in nest predation along forest–grassland edges. Predation was higher in habitat interiors compared to edges during the first year, whereas the opposite pattern was observed during the subsequent year. In addition, dramatic between-year differences in the species composition of nest predators were observed. Therefore, we hypothesise that the effect of edges on nest predation is difficult to predict in landscapes with high predator diversity. In addition, our data indicate that a high abundance of wild boar considerably increases the risk of predation for ground-nesting birds.  相似文献   

12.
Chipps SR  Dunbar JA  Wahl DH 《Oecologia》2004,138(1):32-38
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.  相似文献   

13.
Population dynamics, demography and body size of the cladoceranBosmina longirostris were examined in an experimental study in which the abundance of its predator (the cyprind fishPhoxinus eos) was varied in an unproductive lake. Four densities of fish were used, encompassing the biomass of fish in the lake.Bosmina was most abundant at low and medium fish densities (1.06 and 2.12 g fish biomass · m-3) and less abundant when fish were either absent or present at high density (3.71 g fish biomass · m-3). The unimodal response to predator abundance resulted from effects on both birth and death rates.Bosmina birth rates increased as fish biomass increased, in response to increasing food (phytoplankton) biomass. Death rates were highest at high fish biomass (because of fish predation) and in the absence of fish (because of predation by the dipteranChaoborus, which was most abundant in the absence of fish). Size-frequency distributions revealed that fish eliminated the larger size classes ofBosmina, and mean carapace length ofBosmina populations was inversely proportional to fish biomass.Bosmina initiated reproduction at smaller size in the presence of fish than in their absence, and size at maturity was inversely proportional to fish biomass. Size at birth also tended to decrease with increasing fish biomass, but this trend was not as strong as that of size at maturity. Decreased size at maturity apparently allowedBosmina individuals to reproduce before becoming vulnerable to fish predation. Flexibility in size at maturity, together with low abundance of invertebrate predators and large herbivores (which were preyed upon by fish), allowedBosmina to become abundant in low and medium fish treatments. In the high fish treatment, mortality due to fish predation was too severe to be offset by decreased size at maturity, andBosmina population density was low. The net response ofBosmina populations to fish predation results from interactive effects of predation on mortality, natality, and life history traits.  相似文献   

14.
ABSTRACT Nest predation is a natural component of greater sage-grouse (Centrocercus urophasianus) reproduction, but changes in nesting habitat and predator communities may adversely affect grouse populations. We used a 2-part approach to investigate sage-grouse nest predation. First, we used information criteria to compare nest survival models that included indices of common raven (Corvus corax) abundance with other survival models that consisted of day of incubation, grouse age, and nest microhabitat covariates using measurements from 77 of 87 sage-grouse nests. Second, we used video monitoring at a subsample of 55 of 87 nests to identify predators of depredated nests (n = 16) and evaluated the influence of microhabitat factors on the probability of predation by each predator species. The most parsimonious model for nest survival consisted of an interaction between day of incubation and abundance of common ravens (wravenXincubation day = 0.67). An estimated increase in one raven per 10-km transect survey was associated with a 7.4% increase in the odds of nest failure. Nest survival was relatively lower in early stages of incubation, and this effect was strengthened with increased raven numbers. Using video monitoring, we found the probability of raven predation increased with reduced shrub canopy cover. Also, we found differences in shrub canopy cover and understory visual obstruction between nests depredated by ravens and nests depredated by American badgers (Taxidea taxus). Increased raven numbers have negative effects on sage-grouse nest survival, especially in areas with relatively low shrub canopy cover. We encourage wildlife managers to reduce interactions between ravens and nesting sage-grouse by managing raven populations and restoring and maintaining shrub canopy cover in sage-grouse nesting areas.  相似文献   

15.
1. We conducted an experimental study of predation by benthivorous fish on a natural community of stream invertebrates using a reach‐scale approach. Over a 2‐year period (experimental phase), the benthic invertebrate community of a stretch containing two species of benthivorous fish was compared with a fishless stretch. Thereafter, all fish were removed and benthic community structure was analysed again to account for natural differences between the two stretches (reference phase). 2. Benthivorous fish at the moderate densities investigated did not affect total benthic biomass or density, but did alter species composition. In addition, the fish effect differed between pool and riffle habitats, with larger effects in the pools indicating a habitat‐specific predation effect. In the reference phase, when all fish were removed from the stream, the difference between the two stretches was reduced. 3. The benthivorous fish reduced the densities of four taxa (Pisidium sp., Dugesia gonocephala, Gammarus pulex, Limoniidae), representing 29% of total biomass. It is possible that density reductions of other species were masked by prey migration despite the relatively large spatial scale. Indeed, higher drift activity in the upstream fishless stretch could have increased the density of Baetis rhodani in the fish stretch, as indicated by the results of a drift model. 4. Our results provide insights into stream food web ecology because fish predation showed effects even in a natural system where habitat complexity was high, environmental factors were highly variable and many predator and prey species interacted and because benthivorous fish were the focus, whereas the majority of previous predation experiments in streams have used drift‐feeding trout.  相似文献   

16.
Increasing the amount of woody debris in streams has often increased population size of one or more focal species whereas clearing a stream of woody debris has often reduced populations. Alterations of the amount of woody debris change multiple aspects of the habitat simultaneously, so it is very difficult to know what particular stimulus or combination of stimuli evoked the changes in the fish populations. The purpose of this research was to alter habitat by the addition of overhead cover alone, and to see whether or not that single change would affect the distribution of stream-dwelling fishes. The addition of solid, floating cover objects 1.8 m by 2.4 m resulted in increased local populations of bluntnose minnow (Pimphales notatus), creek chub (Semotilus atromaculatus), and longear sunfish (Lepomis megalotis) five to six weeks later, but did not change the distribution of four other species: white sucker (Catostomus commersoni), green sunfish (Lepomis cyanellus), bluegill (Lepomis macrochirus), and largemouth bass (Micropterus salmoides). These results showed that for some species at least, changes in channel morphology, visual isolation, and amelioration of flow produced by adding three-dimensional complex woody debris were not essential for making locally attractive habitat changes in a warmwater stream. The effectiveness of overhead cover as used here would be expected to vary for different species and depend on such things as predation threat, flow, and food levels.  相似文献   

17.
Predator driven changes in community structure   总被引:5,自引:0,他引:5  
Summary The zooplankton community of a small pond changed markedly with temporal variation in predation pressure. Long term changes in zooplankton community structure occurred following the replacement of planktivorous fish by phantom midge (Chaoborus americanus) larvae as the predominant predator of zooplankton. The interannual changes following the establishment of Chaoborus included the apparent or near extinction, of species ill adapted to the new predation pressure and the successful colonization of well adapted species. Seasonal changes in the species composition and size distribution of the zooplankton community correlate with temporal variation in predation intensity associated with temperature-activity patterns of the predator or changes in the stage structure of the predator population.  相似文献   

18.
1. Behavioural adaptations to avoid and evade predators are common. Many studies have investigated population divergence in response to changes in predation regime within species, but studies exploring interspecific patterns are scant. Studies on interspecific divergence can infer common outcomes from evolutionary processes and highlight the role of environmental constraints in shaping species traits. 2. Species of the dragonfly genus Leucorrhinia underwent well‐studied shifts from habitats being dominated by predatory fish (fish lakes) to habitat being dominated by predatory invertebrates (dragonfly lakes). This change in top predators resulted in a set of adaptive trait modifications in response to the different hunting styles of both predator types: whereas predatory fish actively search and pursue prey, invertebrate predator follow a sit‐and‐wait strategy, not pursuing prey. 3. Here it is shown that the habitat shift‐related change in selection regime on larval Leucorrhinia caused species in dragonfly lakes to evolve increased larval foraging and activity, and results suggest that they lost the ability to recognise predatory fish. 4. The results of the present study highlight the impact of predators on behavioural trait diversification with habitat‐specific predation regimes selecting for distinct behavioural expression.  相似文献   

19.
1. A predator's ability to suppress its prey depends on the level of interference among predators. While interference typically decreases with increasing habitat complexity, it often increases with increasing size differences among individuals. However, little is known about how variation in intrinsic factors such as population size structure alters predator–prey interactions and how this intrinsic variation interacts with extrinsic variation. 2. By experimentally varying the level of vegetation cover and the size structure of the predatory damselfly Ischnura posita Hagen, we examined the individual and interactive effects of variation in habitat complexity and predator size structure on prey mortality. 3. Copepod prey survival linearly increased as the I. posita size ratio decreased and differed by up to 31% among different predator size structures. Size classes had an additive effect on prey survival, most likely because intraspecific aggression appeared size‐independent and size classes differed in microhabitat preference: large I. posita spent 14% more time foraging on the floor than small larvae and spent more time in the vegetation with increasing habitat complexity. Despite this difference in microhabitat use among size classes, habitat structure did not influence predation rates or interference among size classes. 4. In general, results suggest that seasonal and spatial variation in the size structure of populations could drive some of the discrepancies in predator‐mediated prey suppression observed in nature, and this variation could exceed the effects of variation in habitat structure.  相似文献   

20.
The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号