首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histone variants are important components of eukaryotic chromatin and can alter chromatin structure to confer specialized functions. H2B variant histones are rare in nature but have evolved independently in the phyla Apicomplexa and Trypanasomatida. Here, we investigate the apicomplexan‐specific Plasmodium falciparum histone variant Pf H2B.Z and show that within nucleosomes Pf H2B.Z dimerizes with the H2A variant Pf H2A.Z and that Pf H2B.Z and Pf H2A.Z occupancy correlates in the subset of genes examined. These double‐variant nucleosomes also carry common markers of euchromatin like H3K4me3 and histone acetylation. Pf H2B.Z levels are elevated in intergenic regions across the genome, except in the var multigene family, where Pf H2A.Z/Pf H2B.Z double‐variant nucleosomes are only enriched in the promoter of the single active var copy and this enrichment is developmentally regulated. Importantly, this pattern seems to be specific for var genes and does not apply to other heterochromatic gene families involved in red blood cell invasion which are also subject to clonal expression. Thus, Pf H2A.Z/Pf H2B.Z double‐variant nucleosomes appear to have a highly specific function in the regulation of P. falciparum virulence.  相似文献   

2.
3.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

4.
5.
6.
7.
8.
The incorporation of histone variant H2A.Z into nucleosomes plays essential roles in regulating chromatin structure and gene expression. A multisubunit complex containing chromatin remodeling protein Swr1 is responsible for the deposition of H2A.Z in budding yeast and mammals. Here, we show that the JmjC domain protein Msc1 is a novel component of the fission yeast Swr1 complex and is required for Swr1-mediated incorporation of H2A.Z into nucleosomes at gene promoters. Loss of Msc1, Swr1, or H2A.Z results in loss of silencing at centromeres and defective chromosome segregation, although centromeric levels of CENP-A, a centromere-specific histone H3 variant that is required for setting up the chromatin structure at centromeres, remain unchanged. Intriguingly, H2A.Z is required for the expression of another centromere protein, CENP-C, and overexpression of CENP-C rescues centromere silencing defects associated with H2A.Z loss. These results demonstrate the importance of H2A.Z and CENP-C in maintaining a silenced chromatin state at centromeres.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
真核生物染色质的基本结构组成单元是核小体,基因组DNA被压缩在染色质中,核小体的存在通常会抑制转录、复制、修复和重组等发生在DNA模板上的生物学过程。组蛋白变体H2A.Z可以调控染色质结构进而影响基因的转录过程,但其详细的调控机制仍未研究清楚。为了比较含有组蛋白变体H2A.Z的核小体和常规核小体在盐离子作用下的稳定性差异,本文采用Förster共振能量转移的方法检测氯化钠、氯化钾、氯化锰、氯化钙、氯化镁等离子对核小体的解聚影响。实验对Widom 601 DNA序列进行双荧光Cy3和Cy5标记,通过荧光信号值的变化来反映核小体的解聚变化。Förster共振能量转移检测结果显示:在氯化钠、氯化钾、氯化锰、氯化钙和氯化镁作用下,含有组蛋白变体H2A.Z的核小体解聚速度相比于常规核小体要慢,且氯化钙、氯化锰和氯化镁的影响更明显。电泳分析结果表明,在75℃条件下含有组蛋白变体H2A.Z的核小体的解聚速率明显低于常规核小体。采用荧光热漂移检测(fluorescence thermal shift analysis , FTS)进一步分析含有组蛋白变体H2A.Z核小体的稳定性,发现两类核小体的荧光信号均呈现2个明显的增长期,含有组蛋白变体H2A.Z核小体的第1个荧光信号增速期所对应的温度明显高于常规核小体,表明核小体中H2A.Z/H2B二聚体的解聚变性温度要高于常规的H2A/H2B二聚体,含有组蛋白变体H2A.Z核小体的热稳定性高。研究结果均表明,含有组蛋白变体H2A.Z的核小体的结构比常规核小体的结构稳定。  相似文献   

19.
Histone H2A variants generate diversity in chromatin structure and functions, as nucleosomes containing variant H2A histones have altered physical, chemical, and biological properties. H2A.Z is an evolutionarily ancient and highly conserved H2A variant that regulates processes ranging from gene expression to the DNA damage response. Here we find that the unstructured portion of the C-terminal tail of H2A.Z is required for the normal functions of this histone variant in budding yeast. We have also identified a novel splice isoform of the human H2A.Z-2 gene that encodes a C-terminally truncated H2A.Z protein that is similar to the truncation mutants we identified in yeast. The short forms of H2A.Z in both yeast and human cells are more loosely associated with chromatin than the full-length proteins, indicating a conserved function for the H2A.Z C-terminal tail in regulating the association of H2A.Z with nucleosomes.  相似文献   

20.
Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号