首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isoenzyme pattern of hexokinase in rabbit red cells (erythrocytes, fetal erythrocytes and reticulocytes) were determined by means of agarose gel and disc electrophoresis. One duplicated hexokinase (4a and 4b according to the IUPAC-nomenclature) was detected in rabbit erythrocytes as also described for human erythrocytes. Besides the isoenzymes 4a and 4b reticulocytes also contain hexokinase 2 and 3 like rabbit and rat liver. The high KM glucose phosphorylating enzyme, hexokinase 1 could be demonstrated only under specific conditions in the reticulocytes during the initial stage of the anemia. After the fractionation of reticulocyte homogenates the total hexokinase activity was recovered in the mitochondria and cytosol to nearly equal amounts as revealed by the distribution of markers. Hexokinase 2 and 3 were detectable in reticulocytes and in isolated mitochondria only after the addition of certain dissociating agents. In contrast to the tightly bound mitochondrial hexokinases 2 and 3 the type 4a and 4b are more loosely bound and exhibit a bilocal distribution between mitochondria and cytosol of reticulocytes.  相似文献   

2.
La3+ inhibits the respiration-dependent accumulation of Ca2+ by rat liver mitochondria when added in very small amounts (0.1–l.0 nmole per mg protein). However, La3+ itself does not activate respiration. With the use of 140La3+ it was found that La3+ is very rapidly bound to rat liver mitochondria in a respiration-independent process accompanied by loss of H+ to the medium. When both La3+ and Ca2+ are added to mitochondria simultaneously, most of the La3+ but little Ca2+ are bound. La3+ added to mitochondria previously loaded with Ca2+ is tightly bound without discharge of Ca2+. Conversely, when Ca2+ is added to La3+-loaded mitochondria it is not bound nor is the La3+ discharged. La3+ inhibits both high-affinity and low-affinity respiration-independent Ca2+ binding. Isotopic experiments showed that La3+ is, in fact, bound to the same high-affinity sites as Ca2+, in both intact mitochondria and in mitochondrial extracts. It is concluded (1) that La3+ binds to and inhibits the Ca2+ carrier; (2) that La3+ is not transported by the Ca2+ carrier; and (3) that La3+ is, in addition, bound to a large number of external sites on mitochondria for which Ca2+ is not a strong competitor.  相似文献   

3.
Incubation of rabbit reticulocytes with cycloheximide and 59Fe bound to transferrin in plasma induces excessive non-hemoglobin 59Fe-labeled heme accumulation in mitochondria. During incubation of these mitochondria in vitro a part of 59Fe-labeled heme is released into the surrounding medium. The addition of globin or bovine serum albumin to the incubation mixture essentially increases the amount of heme released from mitochondria.  相似文献   

4.
Summary The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.  相似文献   

5.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

6.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

7.
Rat heart mitochondria are able to extract a large fraction of the Ca2+ tightly bound to rabbit skeletal muscle troponin, or to the 18.300 daltons, Ca2+ receptor fragment of the troponin molecule (TN-C). The amount of Ca2+ removed may reach 100% in the case of TN-C- but substantially less with intact troponin. The reaction is fairly rapid, often reaching completion in seconds, and is inhibited by uncouplers and by the classical inhibitor of Ca2+ transport in mitochondria, ruthenium red.  相似文献   

8.
The mitochondrial membrane permeability transition induced byCa2+ is inhibited by quinine in a dose-dependent fashion.Competition experiments strongly suggest that quinine displacesCa2+ bound to the inner membrane. This is supported byexperiments showing that quinine inhibits Ca2+-dependent butnot Ca2+-independent mitochondrial swelling induced byphenylarsine oxide. As with Ca2+ chelators, quinine inducespermeability transition pore closure preventing the contraction induced bypoly(ethylene glycol) 2000 in mitochondria preswollen by incubation in KSCNmedium containing Ca2+ and inorganic phosphate. These resultssuggest that quinine dislodges Ca2+ bound to the protein site,which triggers pore opening.  相似文献   

9.
The respiratory rate of rat liver mitochondria in the presence of NADH as exogenous substrate is enhanced by the addition of CaCl2 (> 50 μM) when inorganic phosphate is present in the medium. The Ca-induced oxidation of NADH is inhibited by rotenone but is not affected by uncoupling agents. EDTA, which does not reverse the swelling of mitochondria which occurs in the presence of Ca2+ and phosphate, is able to inhibit reversibly the Ca-stimulated NADH oxidation. A stimulation of the rate of oxidation of NADH by Ca2+ is also observed in mitochondria partially swollen in a hypotonic medium.  相似文献   

10.
Hexokinase in rabbit reticulocytes is present in two molecular forms (hexokinase Ia and Ib) separable by ion-exchange chromatography on DE-52 columns. By the use of ion-exchange HPLC we have been able to show that the isozymic form we previously called hexokinase la can be resolved into two peaks of activity one of which is (Ia) soluble, the other (Ia*) particulate. Hexokinase Ia* can be solubilized by detergents like saponine and Triton X-100 and disappears during ‘in vivo’ reticulocytes maturation. This new hexokinase micro-heterogeneity is not caused by different oxidized forms of the enzyme nor influenced by the presence of proteolytic inhibitors during lysate preparation.  相似文献   

11.
The mechanism by which Bcl-2 inhibits apoptosis is unknown. One proposal is that Bcl-2 regulates intracellular Ca2+ fluxes thought to mediate apoptosis. In the present study, we investigated Bcl-2's mechanism of action by determining the effect of Bcl-2 on intracellular Ca2+ fluxes in the WEH17.2 mouse lymphoma cell line, which does not express Bcl-2, and its stable transfectant, which expresses a high level of Bcl-2. Treatment with the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin produced marked alterations in intracellular Ca2+ homeostasis in both WEH17.2 and W.Hb12 cells, including elevation of free cytosolic Ca2+, endoplasmic reticulum Ca2+ pool depletion, capacitative entry of extracellular Ca2+, and increased loading of Ca2+ into mitochondria. Similar changes in intracellular Ca2+ occurred spontaneously in both cell lines following exponential growth. In both situations, W.Hb12 cells maintained optimal viability despite marked alterations in intracellular Ca 2+' whereas WEH17.2 cells underwent apoptosis. Treatment with the glucocorticoid hormone, dexamethasone, induced apoptosis in WEH17.2 cells, but not in W.HB12 cells, even though dexamethasone treatment did not alter intracellular Ca2+ homeostasis in either cell line. These findings indicate that Bcl-2 acts downstream from intracellular Ca 2+ fluxes in a pathway where Ca2+-dependent and Ca2+-independent death signals converge.  相似文献   

12.
Tightly coupled mitochondria isolated from Ehrlich ascites tumor cells accumulate and retain high concentrations of Ca2+ in the presence of ATP for periods up to at least 20 min at 25 °C. The presence of inorganic phosphate up to 20 mm does not prevent such Ca2+ retention. The tumor mitochondria accumulate Ca2+ in the presence of succinate as an energy source but lose the Ca2+ after 1–2 min. Addition of ATP (Km approx 1 mm) to the incubation medium after Ca2+ release, induces reaccumulation of the ion. Thus, the ability of the tumor mitochondria to retain Ca2+ differs markedly from that of rat liver mitochondria and is seen as being of potential biological significance to the unique metabolic behavior of the ascites tumor cells.  相似文献   

13.
In liver mitochondria loaded with Ca2+ or Sr2+, α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron transport along the respiratory chain and consequently to disruption of the energy functions of the organelles.  相似文献   

14.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

15.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

16.
The salivary acinar cells have unique Ca2+ signaling machinery that ensures an extensive secretion. The agonist-induced secretion is governed by Ca2+ signals originated from the endoplasmic reticulum (ER) followed by a store-operated Ca2+ entry (SOCE). During tasting and chewing food a frequency of parasympathetic stimulation increases up to ten fold, entailing cells to adapt its Ca2+ machinery to promote ER refilling and ensure sustained SOCE by yet unknown mechanism. By employing a combination of fluorescent Ca2+ imaging in the cytoplasm and inside cellular organelles (ER and mitochondria) we described the role of mitochondria in adjustment of Ca2+ signaling regime and ER refilling according to a pattern of agonist stimulation. Under the sustained stimulation, SOCE is increased proportionally to the degree of ER depletion. Cell adapts its Ca2+ handling system directing more Ca2+ into mitochondria via microdomains of high [Ca2+] providing positive feedback on SOCE while intra-mitochondrial tunneling provides adequate ER refilling. In the absence of an agonist, the bulk of ER refilling occurs through Ca2+-ATPase-mediated Ca2+ uptake within subplasmalemmal space. In conclusion, mitochondria play a key role in the maintenance of sustained SOCE and adequate ER refilling by regulating Ca2+ fluxes within the cell that may represent an intrinsic adaptation mechanism to ensure a long-lasting secretion.  相似文献   

17.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

18.
Fertilization activates development by stimulating a plethora of ATP consuming processes that must be provided for by an up-regulation of energy production in the zygote. Sperm-triggered Ca2+ oscillations are known to be responsible for the stimulation of both ATP consumption and ATP supply but the mechanism of up regulation of energy production at fertilization is still unclear. By measuring [Ca2+] and [ATP] in the mitochondria of fertilized mouse eggs we demonstrate that sperm entry triggers Ca2+ oscillations in the cytosol that are transduced into mitochondrial Ca2+ oscillations pacing mitochondrial ATP production. This results, during fertilization, in an increase in both [ATP]mito and [ATP]cyto. We also observe the stimulation of ATP consumption accompanying fertilization by monitoring [Ca2+]cyto and [ATP]cyto during fertilization of starved eggs. Our observations reveal that lactate, in contrast to pyruvate, does not fuel mitochondrial ATP production in the zygote. Therefore lactate-derived pyruvate is somehow diverted from mitochondrial oxidation and may be channeled to other metabolic routes. Together with our earlier findings, this study confirms the essential role for exogenous pyruvate in the up-regulation of ATP production at the onset of development, and suggests that lactate, which does not fuel energetic metabolism may instead regulate the intracellular redox potential.  相似文献   

19.
In rabbit heart, results show that two isoenzymes of hexokinase (HK) are present. The enzymatic activity associated with mitochondria consists of only one isoenzyme; according to its electrophoretic mobility and its apparent Km for glucose (0.065 mm), it has been identified as type I isoenzyme. The bound HK I exhibits a lower apparent Km for ATPMg than the solubilized enzyme, whereas the apparent Km for glucose is the same for bound and solubilized HK. Detailed studies have been performed to investigate the interactions which take place between the enzyme and the mitochondrial membrane. Neutral salts efficiently solubilize the bound enzyme. Digitonin induces only a partial release of the enzyme bound to mitochondria; this result could be explained by the existence of contacts between the outer and the inner mitochondrial membranes [C. R. Hackenbrock (1968)Proc. Natl. Acad. Sci. USA61, 598–605]. Furthermore, low concentrations (0.1 mm) of glucose 6-phosphate (G6P) or ATP4? specifically solubilize hexokinase. The solubilizing effect of G6P and ATP4?, which are potent inhibitors of the enzyme, can be prevented by incubation of mitochondria with Pi or Mg2+. In addition, enzyme solubilization by G6P can be reversed by Mg2+ only when the proteolytic treatment of the heart homogenate is omitted during the course of the isolation of mitochondria. These results concerning the interaction of rabbit heart hexokinase with the outer mitochondrial membrane agree with the schematic model proposed by Wilson [(1982) Biophys. J.37, 18–19] for the brain enzyme. This model involves the existence of two kinds of interactions between HK and mitochondria; a very specific one with the hexokinase-binding protein of the outer mitochondrial membrane, which is suppressed by glucose 6-phosphate, and a less specific, cation-mediated one.  相似文献   

20.
Olga Vergun 《BBA》2005,1709(2):127-137
Ca2+-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca2+ concentrations (about 30-100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca2+; 20 μM Ca2+ was required to depolarize liver mitochondria. Ca2+ did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca2+-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号