首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluorogenic probe-based PCR assay was developed and evaluated for its utility in detecting Bacillus cereus in nonfat dry milk. Regions of the hemolysin and cereolysin AB genes from an initial group of two B. cereus isolates and two Bacillus thuringiensis isolates were cloned and sequenced. Three single-base differences in two B. cereus strains were identified in the cereolysin AB gene at nucleotides 866, 875, and 1287, while there were no species-consistent differences found in the hemolysin gene. A fluorogenic probe-based PCR assay was developed which utilizes the 5'-to-3' exonuclease of Taq polymerase, and two fluorogenic probes were evaluated. One fluorogenic probe (cerTAQ-1) was designed to be specific for the nucleotide differences at bases 866 and 875 found in B. cereus. A total of 51 out of 72 B. cereus strains tested positive with the cerTAQ-1 probe, while only 1 out of 5 B. thuringiensis strains tested positive. Sequence analysis of the negative B. cereus strains revealed additional polymorphism found in the cereolysin probe target. A second probe (cerTAQ-2) was designed to account for additional polymorphic sequences found in the cerTAQ-1-negative B. cereus strains. A total of 35 out of 39 B. cereus strains tested positive (including 10 of 14 previously negative strains) with cerTAQ-2, although the assay readout was uniformly lower with this probe than with cerTAQ-1. A PCR assay using cerTAQ-1 was able to detect approximately 58 B. cereus CFU in 1 g of artificially contaminated nonfat dry milk. Forty-three nonfat dry milk samples were tested for the presence of B. cereus with the most-probable-number technique and the fluorogenic PCR assay. Twelve of the 43 samples were contaminated with B. cereus at levels greater than or equal to 43 CFU/g, and all 12 of these samples tested positive with the fluorogenic PCR assay. Of the remaining 31 samples, 12 were B. cereus negative and 19 were contaminated with B. cereus at levels ranging from 3 to 9 CFU/g. All 31 of these samples were negative in the fluorogenic PCR assay. Although not totally inclusive, the PCR-based assay with cerTAQ-1 is able to specifically detect B. cereus in nonfat dry milk.  相似文献   

2.
An assay based on the PCR has been developed to facilitate detection and identification of Bacillus cereus in foods. Three primers for the PCR have been designed within the sequence for cereolysin AB, a cytolytic determinant that encodes lecithin-hydrolyzing and hemolytic activities of B. cereus. With the PCR and hybridization, the specificity of the primers was tested with 39 isolates of the B. cereus group, with 17 other Bacillus spp., and with 21 non-Bacillus strains. Results demonstrate a high specificity of the three oligonucleotides for isolates of the B. cereus group. With a combined PCR-hybridization assay, the detection limit for B. cereus in artificially contaminated milk was 1 CFU/ml of milk.  相似文献   

3.
An automated fluorescence-based PCR system (a model AG-9600 AmpliSensor analyzer) was investigated to determine whether it could detect Shiga toxin-producing Escherichia coli (STEC). The AmpliSensor PCR assay involves amplification-mediated disruption of a fluorogenic DNA signal duplex (AmpliSensor) that is homologous to conserved target sequences in a 323-bp amplified fragment of Shiga toxin genes stx1, stx2, and stxe. Using the Amplisensor assay, we detected 113 strains of STEC belonging to 50 different serotypes, while 18 strains of non-Shiga-toxin-producing E. coli and 68 strains of other bacteria were not detected. The detection limits of the assay were less than 1 to 5 CFU per PCR mixture when pure cultures of five reference strains were used and 3 CFU per 25 g of food when spiked ground beef samples that were preenriched overnight were used. The performance of the assay was also evaluated by using 53 naturally contaminated meat samples and 48 raw milk samples. Thirty-two STEC-positive samples that were confirmed to be positive by the culture assay were found to be positive when the AmpliSensor assay was used. Nine samples that were found to be positive when the PCR assay was used were culture negative. The system described here is an automated PCR-based system that can be used for detection of all serotypes of STEC in food or clinical samples.  相似文献   

4.
Cereulide-producing Bacillus cereus can cause an emetic type of food-borne disease that mimics the symptoms provoked by Staphylococcus aureus. Based on the recently discovered genetic background for cereulide formation, a novel 5′ nuclease (TaqMan) real-time PCR assay was developed to provide a rapid and sensitive method for the specific detection of emetic B. cereus in food. The TaqMan assay includes an internal amplification control and primers and a probe designed to target a highly specific part of the cereulide synthetase genes. Additionally, a specific SYBR green I assay was developed and extended to create a duplex SYBR green I assay for the one-step identification and discrimination of the two emesis-causing food pathogens B. cereus and S. aureus. The inclusivity and exclusivity of the assay were assessed using a panel of 100 strains, including 23 emetic B. cereus and 14 S. aureus strains. Different methods for DNA isolation from artificially contaminated foods were evaluated, and established real-time assays were used to analyze two recent emetic food poisonings in southern Germany. One of the food-borne outbreaks included 17 children visiting a day care center who vomited after consuming a reheated rice dish, collapsed, and were hospitalized; the other case concerned a single food-poisoning incident occurring after consumption of cauliflower. Within 2 h, the etiological agent of these food poisonings was identified as emetic B. cereus by using the real-time PCR assay.  相似文献   

5.
In this report we describe the development and evaluation of a fluorogenic PCR assay for the detection of pathogenic Yersinia enterocolitica. The assay targets the chromosomally encoded attachment and invasion gene, ail. Three primer-probe sets (TM1, TM2, and TM3) amplifying different, yet overlapping, regions of ail were examined for their specificity and sensitivity. All three primer-probe sets were able to detect between 0.25 and 0.5 pg of purified Y. enterocolitica DNA. TM1 identified all 26 Y. enterocolitica strains examined. TM3 was able to detect all strains except one, whereas TM2 was unable to detect 10 of the Y. enterocolitica strains tested. None of the primer-probe sets cross-reacted with any of the 21 non-Y. enterocolitica strains examined. When the TM1 set was utilized, the fluorogenic PCR assay was able to detect ≤4 Y. enterocolitica CFU/ml in pure culture and 10 Y. enterocolitica CFU/ml independent of the presence of 108 CFU of contaminating bacteria per ml. This set was also capable of detecting ≤1 CFU of Y. enterocolitica per g of ground pork or feces after a 24-h enrichment in a Yersinia selective broth.  相似文献   

6.
A fluorogenic (TaqMan) PCR assay was developed to detect Ralstonia solanacearum strains. Two fluorogenic probes were utilized in a multiplex reaction; one broad-range probe (RS) detected all biovars of R. solanacearum, and a second more specific probe (B2) detected only biovar 2A. Amplification of the target was measured by the 5′ nuclease activity of Taq DNA polymerase on each probe, resulting in emission of fluorescence. TaqMan PCR was performed with DNA extracted from 42 R. solanacearum and genetically or serologically related strains to demonstrate the specificity of the assay. In pure cultures, detection of R. solanacearum to ≥102 cells ml−1 was achieved. Sensitivity decreased when TaqMan PCR was performed with inoculated potato tissue extracts, prepared by currently recommended extraction procedures. A third fluorogenic probe (COX), designed with the potato cytochrome oxidase gene sequence, was also developed for use as an internal PCR control and was shown to detect potato DNA in an RS-COX multiplex TaqMan PCR with infected potato tissue. The specificity and sensitivity of the assay, combined with high speed, robustness, reliability, and the possibility of automating the technique, offer potential advantages in routine indexing of potato tubers and other plant material for the presence of R. solanacearum.  相似文献   

7.
Raw minced meat samples (25) were randomly collected from different slaughterhouses in Dakhlia and Sharkyia Governorates, Egypt. One hundred and fifty Bacillus species related to the cereus group were isolated from the collected meat samples using Mannitol Yolk Polymyxin (MYP) agar plates. Purified bacterial cultures were then tested for their virulence factors with respect to hemolysin, protease and lecithinase. Of the tested Bacillus strains (150), 81, 95.3 and 76 % of total tested Bacillus strains were positive for hemolysin, protease and lecithinase tests, respectively. The identity of one of the most potent strains suspected and encoded as Bacillus cereus F23 was confirmed by amplifying its 16S rRNA gene. The partial nucleotide sequence of the amplified 16S rRNA gene of the tested strain was submitted to GenBank with accession number JX455159. Multiplex PCR amplification of enterotoxin genes in the tested strain, using specific primers, yielded amplicons of molecular sizes 695 and 565 bp for enterotoxins hblC and cytK, respectively. Thermal resistance of B. cereus F23 (JX455159) spores was determined by calculating D values at 65, 75, 85 and 95 °C for 36, 25, 19 and 16 min, respectively, and the calculated Z value was recorded as 0.119 °C. A lactic acid bacteria (LAB) strain isolated from pickles was preliminary identified as Lactobacillus plantarum F14 (LBF14) and later confirmed by detecting its 16S rRNA gene, and it was submitted to GenBank with accession number JX282192. The identified LAB strain was tested as a bioprotective agent against toxigenic B. cereus F23 spores both in minced meat samples and BHI broth medium. A reduction in B. cereus F23 population between 4 and 6 log cycles under different tested conditions was recorded. The activity of virulence factors (protease and lecithinase) decreased and hemolytic activity was completely inhibited in the presence of 103 CFU/ml of Lactobacillus plantarum F14 (JX282192). Inthe presence of 105 CFU/ml Lactobacillus plantarum F14 (JX282192), protease and lecithinase activities of B. cereus F23 were decreased by 85 and 71 %, respectively.  相似文献   

8.
Growth and germination of vegetative cells and endospores of Bacillus cereus were affected by Streptococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, and Lactobacillus bulgaricus in nonfat milk medium and by salts of organic acids in broth medium. Growth of the lactic acid bacteria was not affected by B. cereus. B. cereus increased rapidly to about 108 CFU/ml when cells were added at the beginning of growth of lactic acid bacteria; it was inactivated slowly when added after 24 h and rapidly when added after 72 h of lactic acid bacterial growth. Streptococci were more inhibitory to the growth of B. cereus than lactobacilli were at 24 h. Spore germination was not affected after 24 h, but it was inhibited after 48 and 72 h of lactic acid bacterial growth. Acetate was more inhibitory to the growth of vegetative cells, while formate was more inhibitory to spore germination. Acetate, formate, and lactate (all at 0.1 M) completely inactivated multiplication of B. cereus at pH 6.1, 6.0, and 5.6, respectively. Spores of B. cereus were more resistant to these organic acids compared with the resistance of vegetative cells. Formate, lactate, and acetate (all at 0.1 M) caused 50% inhibition of spore germination at pH 4.4, 4.3, and 4.2, respectively.  相似文献   

9.
Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors.  相似文献   

10.
Of the toxins produced by Bacillus cereus, the emetic toxin is likely the most dangerous but, due to the lack of a suitable assay, the least well known. In this paper, a new, sensitive, inexpensive, and rapid bioassay for detection of the emetic toxin of B. cereus is described. The assay is based on the loss of motility of boar spermatozoa upon 24 h of exposure to extracts of emetic B. cereus strains or contaminated food. The paralyzed spermatozoa exhibited swollen mitochondria, but no depletion of cellular ATP or damage to plasma membrane integrity was observed. Analysis of the purified toxin by electrospray tandem mass spectrometry showed that it was a dodecadepsipeptide with a mass fragmentation pattern similar to that described for cereulide. The 50% effective concentration of the purified toxin to boar spermatozoa was 0.5 ng of purified toxin ml of extended boar semen−1. This amount corresponds to 104 to 105 CFU of B. cereus cells. No toxicity was detected for 27 other B. cereus strains up to 108 CFU ml−1. The detection limit for food was 3 g of rice containing 106 to 107 CFU of emetic B. cereus per gram. Effects similar to those provoked by emetic B. cereus toxin were also induced in boar spermatozoa by valinomycin and gramicidin at 2 and 3 ng ml of extended boar semen−1, respectively. The symptoms provoked by the toxin in spermatozoa indicated that B. cereus emetic toxin was acting as a membrane channel-forming ionophore, damaging mitochondria and blocking the oxidative phosphorylation required for the motility of boar spermatozoa.  相似文献   

11.
Diagnostic Real-Time PCR for Detection of Salmonella in Food   总被引:5,自引:0,他引:5       下载免费PDF全文
A robust 5′ nuclease (TaqMan) real-time PCR was developed and validated in-house for the specific detection of Salmonella in food. The assay used specifically designed primers and a probe target within the ttrRSBCA locus, which is located near the Salmonella pathogenicity island 2 at centisome 30.5. It is required for tetrathionate respiration in Salmonella. The assay correctly identified all 110 Salmonella strains and 87 non-Salmonella strains tested. An internal amplification control, which is coamplified with the same primers as the Salmonella DNA, was also included in the assay. The detection probabilities were 70% when a Salmonella cell suspension containing 103 CFU/ml was used as a template in the PCR (5 CFU per reaction) and 100% when a suspension of 104 CFU/ml was used. A pre-PCR sample preparation protocol including a preenrichment step in buffered peptone water followed by DNA extraction-purification was applied when 110 various food samples (chicken rinses, minced meat, fish, and raw milk) were investigated for Salmonella. The diagnostic accuracy was shown to be 100% compared to the traditional culture method. The overall analysis time of the PCR method was approximately 24 h, in contrast to 4 to 5 days of analysis time for the traditional culture method. This methodology can contribute to meeting the increasing demand of quality assurance laboratories for standard diagnostic methods. Studies are planned to assess the interlaboratory performance of this diagnostic PCR method.  相似文献   

12.
Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis are the major concerns for the food safety in terms of frequency and/or seriousness of the disease. Being members of the same group and sharing DNA homology to a larger extent, they do create problems when their specific detection/identification is attempted from different food and environmental sources. Numerous individual polymerase chain reaction (PCR) and few multiplex PCR (mPCR) methods have been employed to detect these organisms by targeting toxin genes but with lack of internal amplification control (IAC). Therefore, we attempted a mPCR with IAC for the detection of enterotoxic B. cereus group strains by selecting hbl A, nhe A and cyt K genes from B. cereus, indicative of the diarrheal potential and cry I A and pag genes, the plasmid borne phenotypic markers specific to B. thuringiensis and B. anthracis strains, respectively. Multiplex PCR assay validation was performed by simultaneous comparison with the results of single-target PCR assays and correlated to the classical conventional and biochemical identification of the organisms. The mPCR was able to detect as low as 101–102 organisms per ml following overnight enrichment of spiked food samples (vegetable biriyani and milk) in buffered peptone water (BPW). The presence of these organisms could also be detected by mPCR in naturally contaminated samples of rice based dishes and milk. The high throughput and cost-effective mPCR method described could provide a powerful tool for simultaneous, rapid and reliable detection of enterotoxic B. cereus group organisms.  相似文献   

13.
Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.  相似文献   

14.
As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152T, Bacillus thuringiensis IAM 12077T, Bacillus mycoides ATCC 6462T, and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  相似文献   

15.
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.  相似文献   

16.
In a study of occupational exposure to Bacillus thuringiensis, 20 exposed greenhouse workers were examined for Bacillus cereus-like bacteria in fecal samples and on biomonitoring filters. Bacteria with the following characteristics were isolated from eight individuals: intracellular crystalline inclusions characteristic of B. thuringiensis, genes for and production of B. cereus enterotoxins, and positivity for cry11 as determined by PCR. DNA fingerprints of the fecal isolates were identical to those of strains isolated from the commercial products used. Work processes (i.e., spraying) correlated with the presence of B. thuringiensis in the fecal samples (102 to 103 CFU/g of feces). However, no gastrointestinal symptoms correlated with the presence of B. thuringiensis in the fecal samples.  相似文献   

17.
A rapid, quantitative PCR assay (TaqMan assay) which quantifies Clostridium botulinum type E by amplifying a 280-bp sequence from the botulinum neurotoxin type E (BoNT/E) gene is described. With this method, which uses the hydrolysis of an internal fluoregenic probe and monitors in real time the increase in the intensity of fluorescence during PCR by using the ABI Prism 7700 sequence detection system, it was possible to perform accurate and reproducible quantification of the C. botulinum type E toxin gene. The sensitivity and specificity of the assay were verified by using 6 strains of C. botulinum type E and 18 genera of 42 non-C. botulinum type E strains, including strains of C. botulinum types A, B, C, D, F, and G. In both pure cultures and modified-atmosphere-packaged fish samples (jack mackerel), the increase in amounts of C. botulinum DNA could be monitored (the quantifiable range was 102 to 108 CFU/ml or g) much earlier than toxin could be detected by mouse assay. The method was applied to a variety of seafood samples with a DNA extraction protocol using guanidine isothiocyanate. Overall, an efficient recovery of C. botulinum cells was obtained from all of the samples tested. These results suggested that quantification of BoNT/E DNA by the rapid, quantitative PCR method was a good method for the sensitive assessment of botulinal risk in the seafood samples tested.  相似文献   

18.
Aims: To develop a quantitative PCR assay for sensitive and specific detection of Mycobacterium avium ssp. paratuberculosis (Map) in a range of dairy products. Methods and Results: TaqMan® assays were designed to target the IS900 and f57 genetic elements of Map. Both real‐time PCR assays were integrated with the Adiapure® Map DNA extraction kit and assessed separately for the detection/quantification of Map in spiked milk, Cheddar cheese and milk powder. Assays were validated against Cheddar cheese samples containing known concentrations of Map. The IS900 qPCR assay was significantly more sensitive than the assay based on the f57 primer/probe. At a threshold cycle value of 38, limits of detection (LOD) for the IS900 qPCR assay were 0·6 CFU ml?1, 2·8 CFU g?1 and 30 CFU g?1 for artificially contaminated pasteurized milk, whole milk powder and Cheddar cheese, respectively. The respective LOD’s for the f57 assay were 6·2 CFU ml?1, 26·7 CFU g?1 and 316 CFU g?1. Conclusion: The integrated Adiapure® extraction – IS900 real time assay described is a sensitive, quantitative method for the detection of Map in dairy products. This is the first study to consider qPCR as a quantitative estimation of Map‐DNA in cheese and whole milk powder. Significance and Impact of the Study: The assay developed allows sensitive detection and quantification of Map DNA in a range of dairy products which is valuable for the screening and surveillance of this potential zoonotic organism.  相似文献   

19.
A real-time PCR assay using non-patented primers and a TaqMan probe for the detection and quantification of Salmonella spp. is presented. The assay is based on an internationally validated conventional PCR system, which was suggested as a standard method for the detection of Salmonella spp. in the FOOD-PCR project. The assay was sensitive and specific. Consistent detection of 9.5 genome equivalents per PCR reaction was achieved, whereas samples containing an average of 0.95 genome equivalents per reaction were inconsistently positive. The assay performed equally well as a commercially available real-time PCR assay and allowed sensitive detection of Salmonella spp. in artificially contaminated food. After enrichment for 16 h in buffered peptone water (BPW) or universal pre-enrichment broth (UPB) 2.5 CFU/25 g salmon and minced meat, and 5 CFU/25 g chicken meat and 25 ml raw milk were detected. Enrichment in BPW yielded higher numbers of CFU/ml than UPB for all matrices tested. However, the productivity of UPB was sufficient, as all samples were positive with both real-time PCR methods, including those containing less than 300 CFU/ml enrichment broth (enrichment of 5 CFU/25 ml raw milk in UPB).  相似文献   

20.
Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a “probe dropout” manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号