首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ClpX requires ATP to unfold protein substrates and translocate them into the proteolytic chamber of ClpP for degradation. The steady-state parameters for hydrolysis of ATP and ATPgammaS by ClpX were measured with different protein partners and the kinetics of degradation of ssrA-tagged substrates were determined with both nucleotides. ClpX hydrolyzed ATPgammaS to ADP and thiophosphate at a rate (6/min) significantly slower than ATP hydrolysis (140/min), but the hydrolysis of both nucleotides was increased by ssrA-tagged substrates and decreased by ClpP. K(M) and k(cat) for hydrolysis of ATP and ATPgammaS were linearly correlated over a 200-fold range, suggesting that protein partners largely affect k(cat) rather than nucleotide binding, indicating that most bound ATP leaves the enzyme by hydrolysis rather than dissociation, and placing an upper limit of approximately 15 micro M on K(D) for both nucleotides. Competition studies with ClpX and fluorescently labeled ADP gave inhibition constants for ATPgammaS ( approximately 2 micro M) and ADP ( approximately 3 micro M) under the reaction conditions used for steady-state kinetics. In the absence of Mg(2+), where hydrolysis does not occur, the inhibition constant for ATP ( approximately 55 micro M) was weaker but very similar to the value for ATPgammaS ( approximately 45 micro M). Compared with ATP, ATPgammaS supported slow but roughly comparable rates of ClpXP degradation for two Arc-ssrA substrates and denatured GFP-ssrA, but not of native GFP-ssrA. These results show that the processing of protein substrates by ClpX is closely coupled to the maximum rate of nucleotide hydrolysis.  相似文献   

2.
An evolutionary scheme for the origin of chemiosmotic coupling of redox reactions and ATP synthesis is proposed. It is argued that the primitive heterotroph, which generated ATP by substrate level phosphorylation, used some of this ATP in active proton extrusion to regulate cytoplasmic pH. As fermentation substrates were used up, selection favoured organisms which produced a light-dependent redox pump for proton extrusion. This partly replaced the ATP-dependent proton extrusion, thereby economizing on fermentation substrates. The ATP-requiring mechanism was retained for dark proton extrusion. A further economic advantage would come about if the energy of the light-generated proton gradient were used to reverse the ATP-dependent proton pump, leading to chemiosmotic photophosphorylation. This hypothesis explains the origin of the two kinds of proton pump, and their occurrence in the same membrane; the origin of these two prerequisites of chemiosmotic coupling had not previously been adequately explained. The success of the proton pump based on redox loops of alternating vectorial electron and hydrogen atom carriers, rather than the apparently simpler light-driven proton pump of Halobacterium is explained in terms of the ease of converting the former type of cyclic photophosphorylation, but not the latter, into a system bringing about net redox reactions.  相似文献   

3.
After illumination in the presence of dithiothreitol, chloroplast thylakoids catalyze ATP hydrolysis and an exchange between ATP and Pi in the dark. ATP hydrolysis is linked to inward proton translocation. The relationships between ATP hydrolysis, ATP-Pi exchange, and proton translocation during the steady state were examined. The internal proton concentration was found to be proportional to the rate of ATP hydrolysis when these parameters were varied by procedures that do not alter the proton permeability of the thylakoid membranes. A linear relationship between the internal proton concentration and the rate of nonphosphorylating electron flow was previously verified. By determining the constant relating internal proton concentration to both ATP hydrolysis and electron flow, the proton/ATP ratio for the chloroplast ATPase complex was calculated to be 3.4 +/- 0.3. The presence of Pi, which allows ATP-Pi exchange to occur, lowers the internal proton concentration, but does not alter the relationship between the net rate of ATP hydrolysis and internal proton concentration. ATP-Pi exchange shows a dependence on the proton activity gradient very similar to that of ATP synthesis in the light. These results suggest that ATP-Pi exchange resembles photophosphorylation. In agreement with this idea, it is nucleoside diphosphate from the medium that is phosphorylated during exchange. Moreover, the energy-linked incorporation of Pi and ADP into ATP during exchange occurs at a similar rate. Thus, ATP synthesis from medium ADP and Pi takes place at the expense of the pH gradient generated by ATP hydrolysis.  相似文献   

4.
The transport of ATP out of mitochondria and uptake of ADP and Pi into the matrix are coupled to the uptake of one proton (Klingenberg, M., and Rottenberg, H. (1977) Eur. J. Biochem. 73, 125--130). According to the chemiosmotic hypothesis of oxidative phosphorylation this coupling of nucleotide and Pi transport to proton transport implies that the P/O ratio for the synthesis and transport of ATP to the external medium is less than the P/O ratio for the synthesis of ATP inside mitochondria. A survey of previous determinations of the P/O ratio of intact mitochondria showed little convincing evidence in support of the currently accepted values of 3 with NADH-linked substrates and 2 with succinate. We have measured P/O ratios in rat liver mitochondria by the ADP pulse method and by 32 Pi esterification, measuring oxygen uptake with an oxygen electrode, and find values close to 2 with beta-hydroxybutyrate as substrate and 1.3 with succinate as substrate in the presence of rotenone to inhibit NADH oxidation. These values were largely independent of pH, temperature, Mg2+ ion concentration, Pi concentration, ADP pulse size, or amount of mitochondria used. We suggest that these are the true values of the P/O ratio for ATP synthesis and transport by mitochondria, and that previously reported higher values resulted from errors in the determination of oxygen uptake and the use of substrates which lead to ATP synthesis by succinate thiokinase.  相似文献   

5.
R E McCarty  A R Portis 《Biochemistry》1976,15(23):5110-5114
A simple relationship between observed phosphorylation efficiencies (P/e ratios) and internal proton concentration in spinach chloroplast thylakoids has been derived. P/e ratios, varked by either changing the light intensity or by adding the energy transfer inhibitor, 4'-deoxyphlorizin, were found to change with internal proton concentration in accordance with this relationship. A quantitative prediction of the effect of uncouplers on the P/e ratio can probably also be made. By extrapolation of plots of observed P/e ratios against internal proton concentration divided by the overall rate of electron flow, a maximum intrinsic P/e of about 0.66 is obtained. Assuming that two protons appear inside thylakoids per electron transferred, a P/e ratio of 0.66 suggests that three internal protons are consumed for each ATP formed. Internal protons may be considered to be substrates for the phosphorylation reaction. Hill plots of phosphorylation rate vs. internal proton concentration also indicate that three protons are consumed for each ATP synthesized. Thus, the H+ concentration gradient behaves quantitatively, as well as qualitatively, as if it is the connecting link between electron flow and phosphorylation in illuminated thylakoids.  相似文献   

6.
The gramicidin channel contains a single strand of water molecules associated through hydrogen bonds. Previous work has shown that channels of similar size are formed by association of transmembrane alpha helices of synthetic leucine-serine peptides. Both types of channels translocate protons with considerable selectivity relative to other cations, and it has been proposed that the selectivity arises by proton "hopping" along hydrogen-bonded chains of water, whereas other cations must cross by ordinary diffusion processes. It is possible that a similar mechanism underlies proton transport in the Fo subunit of the F1F0 ATP synthase. Using the gramicidin channel as a model, we have tested whether a single strand of water is kinetically competent to translocate protons at a rate sufficient to support known rates of ATP synthesis. We found that the gramicidin channel saturates at approximately 530 pS of protonic current in 4 M HCl, more than sufficient for typical ATP synthesis rates. It follows that proton diffusion to a putative channel in Fo, rather than the channel itself, may limit ATP synthesis rates.  相似文献   

7.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

8.
Understanding the regulatory properties of the activities of the V-type adenosine triphosphatase (ATPase) on tonoplast membranes is important in determining the mechanisms by which this enzyme controls cytoplasmic and vacuolar pH. The possible existence of a regulatory site for adenine nucleotides was examined by comparing the effects of ADP, adenylylimidodiphosphate (AMP-PNP) and 3'- o -(4-benzoyl) benzoyladenine 5'-triphosphate (BzATP) to those of the 2',3'-dialdehyde derivative of AMP (oAMP) and ATP by using highly purified tonoplast vesicles from maize ( Zea mays L. cv. FRB 73) roots. The addition of either AMP-PNP or BzATP reversibly inhibited the initial rate of proton transport catalyzed by the H+-ATPase in a concentration-dependent manner. Less than 20 μ M AMP-PNP or 50 μ M BzATP was sufficient to inhibit half the initial rate of proton transport in the presence of 2 m M ATP and an excess of Mg. Both analogs increased the Km for ATP and reduced the maximum enzyme velocity. The presence of ADP also inhibited proton transport. The characteristics of ADP-induced inhibition were similar to those of BzATP and AMP-PNP. The addition of the periodated derivative of AMP (oAMP) irreversibly inhibited the ATPase in a concentration and time-dependent manner similar to that reported previously (Chow et al. 1992, Plant Physiology 98: 44–52). Irreversible inhibition by oAMP reduced the maximum velocity of the tonoplast ATPase and was prevented by the addition of ATP. The presence of ADP, AMP-PNP or BzATP had no effect on irreversible inhibition by oAMP. The effects of ADP, AMP-PNP and BzATP on the kinetics of ATP utilization and the lack of protection against inhibition by oAMP argue in favor of at least two types of nucleotide binding sites on the V-type ATPase from maize root tonoplast membranes.  相似文献   

9.
Proton transport-coupled unisite catalysis was measured with the H+-ATPase from chloroplasts. The reaction was measured in the ATP hydrolysis direction under deenergized conditions and in the ATP synthesis direction under energized conditions. The equilibrium constant of the enzyme does not change upon energization, whereas the dissociation constants of substrates and products change by orders of magnitude. This indicates that the Gibbs free enthalpy derived from proton translocation is used to change binding affinities of substrates and products, and this results in synthesis of free ATP.  相似文献   

10.
Specificity of the Escherichia coli proton ATPase for adenine, guanine, and inosine nucleotides in catalysis and binding was studied. MgADP, CaADP, MgGDP, and MgIDP were each good substrates for oxidative phosphorylation. The corresponding triphosphates were each substrates for hydrolysis and proton pumping. At 1 mM concentration, MgATP, MgGTP, and MgITP drove proton pumping with equal efficiency. At 0.1 mM concentration, MgATP was 4-fold more efficient than MgITP or MgGTP. Nucleotide-depleted soluble F1 could rebind to F1-depleted membranes and block proton conductivity through F0; rebound nucleotide-depleted F1 catalyzed pH gradient formation with MgATP, MgGTP, or MgITP. This showed that the nonexchangeable nucleotide sites on F1 need not be occupied by adenine nucleotide for proton pumping to occur. It was further shown that no nucleotide was tightly bound in the nonexchangeable sites of F1 during proton pumping driven by MgGTP in these reconstituted membranes, whereas adenine nucleotide was tightly bound when MgATP was the substrate. Nucleotide-depleted soluble F1 bound maximally 5.9 ATP, 3.2 GTP, and 3.6 ITP of which half the ATP and almost all of the GTP and ITP exchanged over a period of 30-240 min with medium ADP or ATP. Also, half of the bound ATP exchanged with medium GTP or ITP. These data showed that inosine and guanine nucleotides do not bind to soluble F1 in nonexchangeable fashion, in contrast to adenine nucleotides. Purified alpha-subunit from F1 bound ATP at a single site but showed no binding of GTP nor ITP, supporting previous suggestions that the non-exchangeable sites in intact F1 are on alpha-subunits.  相似文献   

11.
《Plant science》1988,54(3):177-184
A member fraction from corn roots which contains a vanadate-sensitive ATPase activity has been prepared. The specific activity at 38°C is between 3 and mol 12 μmol · min−1 · mg−1, depending on the age of roots. Addition of ATP promotes a very rapid quenching of the fluorescence of 9-amino-6-chloro-3-methoxy-acridin (ACMA). Proton pumping exhibits a delayed sensitivity to vanadate but is strongly and instantaneously inhibited by the new inhibitor SW 26. Both proton pumping, measured by the initial quenching rate, and ATP hydrolysis show maximum activities at ATP concentrations in the millimolar range, but the apparent Km-value for hydrolysis is higher than that observed for proton pumping. This is interpreted as being due to the presence of two populations of ATPases, one of them hydrolyzing ATP without creating a pH-gradient. The vanadate-sensitive ATP hydrolysis and H+-pumping activity may be solubilized with lysolecithin and reconstituted into liposomes either by a freeze-thawing-sonication or an octylglucoside dilution procedure. Both methods yield proteoliposomes exhibiting very effecient proton pumping, which is more sensitive to vanadate (I50 = 2 μM) or to SW 26 (I50 = 0.5 μM) than that of the original membrane fractions.  相似文献   

12.
The ATP hydrolysis rate and the ATP hydrolysis-linked proton translocation by the F0F1-ATPase of beef heart submitochondrial particles were examined in the presence of several divalent metal cations. All Me–ATP complexes tested sustained ATP hydrolysis, although to a different extent. However, only Mg- and Mn-ATP-dependent hydrolysis could sustain a high level of proton pumping activity, as determined by acridine fluorescence quenching. Moreover, the K m of the Me-ATP hydrolysis-induced proton pumping activity was very similar to the K m value of Me-ATP hydrolysis. Both oligomycin and DCCD caused the full recovery of the fluorescence, providing clear evidence for the association of Mg-ATP hydrolysis with proton translocation through the F0F1-ATPase complex. In contrast, with other Me-ATP complexes, including Ca-ATP as substrate, the proton pumping activity was undetectable, implicating an uncoupling nature for these substrates. Attempts to demonstrate the involvement of the subunit of the enzyme in the coupling mechanism failed, suggesting that the participation of at least the N-terminal segment of the subunit in the coupling mechanism of the mitochondrial enzyme is unlikely.  相似文献   

13.
The transmembrane electrical potential (deltaphi), the proton flux (H+), the rate of electron transport (e), the pH gradient (deltapH) and the rate of phosphorylation (ATP) were measured in chloroplasts of spinach. Photosynthesis was excited periodically with flashes of variable frequencies and intensities. A new method is described for determining the rate of electron transport and proton flux. Under conditions where the rate of electron transport and proton flux are not pH controlled the following correlations were found in the range 50 mV less than or equal to deltaphi less than or equal to 125 mV and 1.8 less than or equal to deltapH less than or equal to 2.7: (1) The pH gradient, deltapH, increases with H+ independently of Phout between 7-9. (2) The rate of phosphorylation, ATP, depends exponentially on deltapH (at constant deltaphi) and is independent of pHout between 7-9. (3) The rate of phosphorylation, ATP, depends also on deltaphi (at constant deltapH and at constant proton flux H+). (4) The proton flux via the ATPase pathway, Hp+, depends non-linearly on the ratio of the proton concentrations: Hp+ approximately (Hin+/Hout+)b, (b=2.3--2.6). The proton flux via the basal pathway, Hb+, depends linearly on the ratio of the proton concentrations: Hb+ approximately (Hin/Hout). (5) The ratio deltaH+/ATP (e/ATP, i.e. the ratio of the total proton flux, Hp+ + Hb+, and the rate of ATP formation, ATP, depends strongly on deltaphi and on deltapH. The ratio is deltaH+/ATP approximately 3 (e/ATP approximately 1.5) at deltapH 2.7 and deltaphi = 125 mV. (6) It is supposed that the reason for the dependence of deltaH+/ATP on deltaphi anddeltapH is the different functional dependence of the basal proton flux Hb+ and the phosphorylating proton flux Hp+ on deltapH and deltaphi. The calculation of deltaH+/ATP on the basis of this assumption is in fair agreement with the experimental values. Also the "threshold" effects can be explained in this way. (7) The ratio of deltaHp+/ATP, i.e. the ratio of the phosphorylating proton flux Hp+ and ATP, is deltaHp+/ATP APPROXIMATELY 2.4.  相似文献   

14.
Facilitated diffusion of [14C]lactose into inverted membrane vesicles of Escherichia coli was measured using HgCl2 as a stopping reagent and polylysine to flocculate the vesicles for filtration. Equilibration of lactose between the internal and external volumes required expression of the y gene of the lac operon and was inhibited by thiodigalactoside or by prior incubation with N-ethylmaleimde or HgCl2. The initial rate of uptake was saturable, with a Kt of 0.95 mM. Counterflow of [14C]lactose was demonstrated in either direction. ATP hydrolysis or respiration drove the efflux of internal lactose. The effect of ATP required addition of F1 coupling factor (ATPase) from E. coli when lactose transport was studied in F1-deficient inverted vesicles. Accumulation of lactose against a concentration gradient was achieved by forming an artificial electrochemical proton gradient consisting of a membrane potential negative inside or a pH gradient basic inside. Addition of ATP inhibited this proton driven uptake showing that it occurred in inverted vesicles. It was concluded that the lactose-proton co-transport protein (M protein) is qualitatively symmetrical with respect to the facilitated diffusion of lactose and the coupling of proton and lactose transport.  相似文献   

15.
Summary The initial rate of ATP-dependent proton uptake by hog gastric vesicles was measured at pH's between 6.1 and 6.9 by measuring the loss of protons from the external space with a glass electrode. The apparent rates of proton loss were corrected for scalar proton production due to ATP hydrolysis. For vesicles in 150mm KCl and pH 6.1, corrected rates of proton uptake and ATP hydrolysis were 639±84 and 619±65 nmol/min×mg protein, respectively, giving an H+/ATP ratio of 1.03±0.7. Furthermore, at all pH's tested the ratio of the rate of proton uptake to the rate of ATP hydrolysis was not significantly different than 1.0. No proton uptake (<10 nmol/min×mg protein) was exhibited by vesicles in 150mm NaCl at pH 6.1 despite ATP hydrolysis of 187±46 nmol/min×mg (nonproductive hydrolysis). Comparison of the rates of proton transport and ATP hydrolysis in various mixture of KCl and NaCl showed that the H+/ATP stoichiometries were not significantly different than 1.0 at all concentrations of K+ greater than 10mm. This fact suggests that the nonproductive rate is vanishingly small at these concentrations, implying that the measured H+/ATP stoichiometry is equal to the enzymatic stoichiometry. This result shows that the isolated gastric (K++H+)-ATPase is thermodynamically capable of forming the observed proton gradient of the stomach.  相似文献   

16.
For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly–disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

17.
Dupont FM 《Plant physiology》1989,89(4):1401-1412
The effect of temperature on the rate of proton transport and ATP hydrolysis by plasma membrane (PM) and tonoplast (TN) ATPases from barley (Hordeum vulgare L. cv CM 72) roots were compared. Rates of proton transport were estimated using the fluorescent amine dyes quinacrine and acridine orange. The ratio between rate of transport and ATP hydrolysis was found to depend on the dye, the temperature, and the type of membrane. The PM ATPase had an estimated Arrhenius energy of activation (Ea) of approximately 18 kilocalories per mole for ATP hydrolysis, and the Ea for proton transport was best estimated with acridine orange, which gave an Ea of 19 kilocalories per mole. The TN ATPase had an Ea for ATP hydrolysis of approximately 10 kilocalories per mole and the Ea for proton transport was best estimated with quinacrine, which gave an Ea of 10 kilocalories per mole. Acridine orange did not give an accurate estimate of Ea for the TN ATPase, nor did quinacrine for the PM ATPase. Reasons for the differences are discussed. Because it was suggested (AJ Pope, RA Leigh [1988] Plant Physiol 86: 1315-1322) that acridine orange interacts with anions to dissipate the pH gradient in TN vesicles, the complex effects of NO3 on the TN ATPase were also examined using acridine orange and quinacrine and membranes from oats and barley. Fluorescent amine dyes can be used to evaluate the effects of ions, substrates, inhibitors, and temperature on transport but caution is required in using rates of quench to make quantitative estimates of proton fluxes.  相似文献   

18.
The ATP synthase from Escherichia coli was reconstituted into liposomes from phosphatidylcholine/phosphatidic acid. The proteoliposomes were energized by an acid-base transition and a K(+)/valinomycin diffusion potential, and one second after energization, the electrochemical proton gradient was dissipated by uncouplers, and the ATP hydrolysis measurement was started. In the presence of ADP and P(i), the initial rate of ATP hydrolysis was up to 9-fold higher with pre-energized proteoliposomes than with proteoliposomes that had not seen an electrochemical proton gradient. After dissipating the electrochemical proton gradient, the high rate of ATP hydrolysis decayed to the rate without pre-energization within about 15 s. During this decay the enzyme carried out approximately 100 turnovers. In the absence of ADP and P(i), the rate of ATP hydrolysis was already high and could not be significantly increased by pre-energization. It is concluded that ATP hydrolysis is inhibited when ADP and P(i) are bound to the enzyme and that a high Delta mu(H(+)) is required to release ADP and P(i) and to convert the enzyme into a high activity state. This high activity state is metastable and decays slowly when Delta mu(H(+)) is abolished. Thus, the proton motive force does not only supply energy for ATP synthesis but also regulates the fraction of active enzymes.  相似文献   

19.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-trifluoromethoxy)phenylhydrazone (FCCP), a typical weak acid protonophore, oleic acid, a fatty acid, and chloroform, a general anesthetic, has been investigated by measuring in mitochondria their effect on (i) the transmembrane proton electrochemical potential gradient (delta mu H) and the rates of electron transfer and adenosine 5'-triphosphate (ATP) hydrolysis in static head, (ii) delta mu H and the rates of electron transfer and ATP synthesis in state 3, and (iii) the membrane proton conductance. Both FCCP and oleic acid increase the membrane proton conductance, and accordingly, they cause a depression of delta mu H [generated by either the redox proton pumps or the adenosinetriphosphatase (ATPase) proton pumps]. Although their effects on ATP synthesis/hydrolysis, respiration, and delta mu H are qualitatively consistent with a pure protonophoric uncoupling mechanism and an additional inhibitory action of oleic acid on both the ATPases and the electron-transfer enzymes, a quantitative comparison between the dissipative proton influx and the rate of either electron transfer or ATP hydrolysis (multiplied by either the H+/e- or the H+/ATP stoichiometry, respectively) at the same delta mu H shows that the increase in membrane conductance induced by FCCP and oleic acid accounts for the stimulation of the rate of ATP hydrolysis but not for that of the rate of electron transfer. Chloroform (at concentrations that fully inhibit ATP synthesis) only very slightly increases the proton conductance of the mitochondrial membrane and causes only a little depression of delta mu H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Experiments with respiration deficient (rho-), ADP/ATP transport deficient (op1) and double (op1 rho-) mutants, with glycolytic and tricarboxylic acid cycle substrates showed that the substrate-induced acidification of yeast suspensions is closely associated with glycolysis. The glucose/proton stoichiometry is 2.5 : 1 to 4 : 1 depending on glucose concentration. The kinetics of the process are complex, the acidification curve having a very fast initial component and two slower exponential components. The first component suggests an initial proton efflux from endogenous sources, triggered by exogenous substrates. The acidification process exhibits two Km values at about 1 and 15 mM D-glucose, indicating two distinct saturable pathways of proton extrusion. The total extent of acidification and thus the final pHout reaches a saturation value with increasing glucose concentration and suspension density. Both the total extent and the rate of acidification are subject to control by extracellular pH which reflects the tendency of the cells to build a fixed [H+]out/[H+]in ratio. When the control is lifted, both quantities are considerably increased. A crucial role in the substrate-induced acidification is thus played by active membrane processes and their control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号