首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Marburg virus (MARV) matrix protein VP40 plays a key role in virus assembly, recruiting nucleocapsids and the surface protein GP to filopodia, the sites of viral budding. In addition, VP40 is the only MARV protein able to induce the release of filamentous virus-like particles (VLPs) indicating its function in MARV budding. Here, we demonstrated that VP40 is phosphorylated and that tyrosine residues at positions 7, 10, 13 and 19 represent major phosphorylation acceptor sites. Mutagenesis of these tyrosine residues resulted in expression of a non-phosphorylatable form of VP40 (VP40(mut) ). VP40(mut) was able to bind to cellular membranes, produce filamentous VLPs, and inhibit interferon-induced gene expression similarly to wild-type VP40. However, VP40(mut) was specifically impaired in its ability to recruit nucleocapsid structures into filopodia, and released infectious VLPs (iVLPs) had low infectivity. These results indicated that tyrosine phosphorylation of VP40 is important for triggering the recruitment of nucleocapsids to the viral envelope.  相似文献   

3.
Huang Y  Xu L  Sun Y  Nabel GJ 《Molecular cell》2002,10(2):307-316
Ebola virus encodes seven viral structural and regulatory proteins that support its high rates of replication, but little is known about nucleocapsid assembly of this virus in infected cells. We report here that three viral proteins are necessary and sufficient for formation of Ebola virus particles and that intracellular posttranslational modification regulates this process. Expression of the nucleoprotein (NP) and virion-associated proteins VP35 and VP24 led to spontaneous assembly of nucleocapsids in transfected 293T cells by transmission electron microscopy. A specific biochemical interaction of these three proteins was demonstrated, and, interestingly, O-glycosylation and sialation of NP were demonstrated and necessary for their association. This distinct mechanism of regulation for filovirus assembly suggests new approaches for viral therapies and vaccines for Ebola and related viruses.  相似文献   

4.
The Ebola virus nucleoprotein (NP) is an essential component of the nucleocapsid, required for filovirus particle formation and replication. Together with virion protein 35 (VP35) and VP24, this gene product gives rise to the filamentous nucleocapsid within transfected cells. Ebola virus NP migrates aberrantly, with an apparent molecular mass of 115 kDa, although it is predicted to encode an approximately 85-kDa protein. In this report, we show that two domains of this protein determine this aberrant migration and that this region mediates its incorporation into virions. These regions, amino acids 439 to 492 and amino acids 589 to 739, alter the mobility of Ebola virus NP by sodium dodecyl sulfate-polyacrylamide gel electrophoresis by 5 and 15 kDa, respectively, and confer similar effects on a heterologous protein, LacZ, in a position-independent fashion. Furthermore, when coexpressed with VP40, VP35, and VP24, this region mediated incorporation of NP into released viruslike particles. When fused to chimeric paramyxovirus NPs derived from measles or respiratory syncytial virus, this domain directed these proteins into the viruslike particle. The COOH-terminal NP domain comprises a conserved highly acidic region of NP with predicted disorder, distinguishing Ebola virus NPs from paramyxovirus NPs. The acidic character of this domain is likely responsible for its aberrant biochemical properties. These findings demonstrate that this region is essential for the assembly of the filamentous nucleocapsids that give rise to filoviruses.  相似文献   

5.
Expression of Ebola virus nucleoprotein (NP) in mammalian cells leads to the formation of helical structures, which serve as a scaffold for the nucleocapsid. We recently found that NP binding with the matrix protein VP40 is important for nucleocapsid incorporation into virions (T. Noda, H. Ebihara, Y. Muramoto, K. Fujii, A. Takada, H. Sagara, J. H. Kim, H. Kida, H. Feldmann, and Y. Kawaoka, PLoS Pathog. 2:e99, 2006). To identify the region(s) on the NP molecule required for VP40 binding, we examined the interaction of a series of NP deletion mutants with VP40 biochemically and ultrastructurally. We found that both termini of NP (amino acids 2 to 150 and 601 to 739) are essential for its interaction with VP40 and for its incorporation into virus-like particles (VLPs). We also found that the C terminus of NP is important for nucleocapsid incorporation into virions. Of interest is that the formation of NP helices, which involves the N-terminal 450 amino acids of NP, is dispensable for NP incorporation into VLPs. These findings enhance our understanding of Ebola virus assembly and in so doing move us closer to the identification of targets for the development of antiviral compounds to combat Ebola virus infection.  相似文献   

6.
7.
8.
The VP40 protein of Ebola virus can bud from mammalian cells in the form of lipid-bound, virus-like particles (VLPs), and late budding domains (L-domains) are conserved motifs (PTAP, PPxY, or YxxL; where "x" is any amino acid) that facilitate the budding of VP40-containing VLPs. VP40 is unique in that potential overlapping L-domains with the sequences PTAP and PPEY are present at amino acids 7 to 13 of VP40 (PTAPPEY). L-domains are thought to function by interacting with specific cellular proteins, such as the ubiquitin ligase Nedd4, and a component of the vacuolar protein sorting (vps) pathway, tsg101. Mutational analysis of the PTAPPEY sequence of VP40 was performed to understand further the contribution of each individual motif in promoting VP40 budding. In addition, the contribution of tsg101 and a second member of the vps pathway, vps4, in facilitating budding was addressed. Our results indicate that (i) both the PTAP and PPEY motifs contribute to efficient budding of VP40-containing VLPs; (ii) PTAP and PPEY can function as L-domains when separated and moved from the N terminus (amino acid position 7) to the C terminus (amino acid position 316) of full-length VP40; (iii) A VP40-PTAP/tsg101 interaction recruits tsg101 into budding VLPs; (iv) a VP40-PTAP/tsg101 interaction recruits VP40 into lipid raft microdomains; and (v) a dominant-negative mutant of vps4 (E228Q), but not wild-type vps4, significantly inhibited the budding of Ebola virus (Zaire). These results provide important insights into the complex interplay between viral and host proteins during the late stages of Ebola virus budding.  相似文献   

9.

Background

Filoviruses, including Ebola virus, are unusual in being filamentous animal viruses. Structural data on the arrangement, stoichiometry and organisation of the component molecules of filoviruses has until now been lacking, partially due to the need to work under level 4 biological containment. The present study provides unique insights into the structure of this deadly pathogen.

Methodology and Principal Findings

We have investigated the structure of Ebola virus using a combination of cryo-electron microscopy, cryo-electron tomography, sub-tomogram averaging, and single particle image processing. Here we report the three-dimensional structure and architecture of Ebola virus and establish that multiple copies of the RNA genome can be packaged to produce polyploid virus particles, through an extreme degree of length polymorphism. We show that the helical Ebola virus inner nucleocapsid containing RNA and nucleoprotein is stabilized by an outer layer of VP24-VP35 bridges. Elucidation of the structure of the membrane-associated glycoprotein in its native state indicates that the putative receptor-binding site is occluded within the molecule, while a major neutralizing epitope is exposed on its surface proximal to the viral envelope. The matrix protein VP40 forms a regular lattice within the envelope, although its contacts with the nucleocapsid are irregular.

Conclusions

The results of this study demonstrate a modular organization in Ebola virus that accommodates a well-ordered, symmetrical nucleocapsid within a flexible, tubular membrane envelope.  相似文献   

10.
Intraviral protein-protein interactions (PPIs) of SARS-CoV-2 in host cells may provide useful information for deep understanding of virology of SARS-CoV-2. In this study, 22 of 55 interactions of the structural and accessory proteins of SARS-CoV-2 were identified by biomolecular fluorescence complementation (BiFC) assay. The nucleocapsid (N) protein was found to have the most interactions among the structural and accessory proteins of SARS-CoV-2, and also specifically interacted with the putative packaging signal (PS) of SARS-CoV-2. We also demonstrated that the PS core containing PS576 RNA bears a functional PS, important for the assembly of the viral RNA into virus like particles (VLPs), and the packaging of SARS-CoV-2 RNA was N dependent.  相似文献   

11.
12.
VP40 octamers are essential for Ebola virus replication   总被引:2,自引:0,他引:2       下载免费PDF全文
Matrix protein VP40 of Ebola virus is essential for virus assembly and budding. Monomeric VP40 can oligomerize in vitro into RNA binding octamers, and the crystal structure of octameric VP40 has revealed that residues Phe125 and Arg134 are the most important residues for the coordination of a short single-stranded RNA. Here we show that full-length wild-type VP40 octamers bind RNA upon HEK 293 cell expression. While the Phe125-to-Ala mutation resulted in reduced RNA binding, the Arg134-to-Ala mutation completely abolished RNA binding and thus octamer formation. The absence of octamer formation, however, does not affect virus-like particle (VLP) formation, as the VLPs generated from the expression of wild-type VP40 and mutated VP40 in HEK 293 cells showed similar morphology and abundance and no significant difference in size. These results strongly indicate that octameric VP40 is dispensable for VLP formation. The cellular localization of mutant VP40 was different from that of wild-type VP40. While wild-type VP40 was present in small patches predominantly at the plasma membrane, the octamer-negative mutants were found in larger aggregates at the periphery of the cell and in the perinuclear region. We next introduced the Arg134-to-Ala and/or the Phe125-to-Ala mutation into the Ebola virus genome. Recombinant wild-type virus and virus expressing the VP40 Phe125-to-Ala mutation were both rescued. In contrast, no recombinant virus expressing the VP40 Arg134-to-Ala mutation could be recovered. These results suggest that RNA binding of VP40 and therefore octamer formation are essential for the Ebola virus life cycle.  相似文献   

13.
The nucleoprotein NP of Marburg virus (MARV) is the major component of the viral nucleocapsid, which also consists of the viral proteins VP35, L, and VP30, as well as the viral genome. During virus assembly at the plasma membrane, the nucleocapsids are enwrapped by the major matrix protein VP40 and the viral envelope, which contains the transmembrane glycoprotein GP. Upon recombinant expression, VP40 alone is able to induce the formation and release of virus-like particles (VLPs) that closely resemble the filamentous morphology of MARV particles. Release of these VP40-induced VLPs is partially dependent on the cellular ESCRT machinery, which interacts with a late-domain motif in VP40. Coexpression with NP significantly enhances the budding of VP40-induced VLPs by an unknown mechanism. In the present study we analyzed the impact of late domains present in NP on the release of VLPs. We observed that the ESCRT I protein Tsg101 was recruited by NP into NP-induced inclusions in the perinuclear region. In the presence of VP40, NP was then recruited to VP40-positive membrane clusters and, in turn, recruited Tsg101 via a C-terminal PSAP late-domain motif in NP. This PSAP motif also mediated a dramatically enhanced incorporation of Tsg101 into VLPs, and its deletion significantly diminished the positive effect of NP on the release of VLPs. Taken together, these data indicate that NP enhances budding of VLPs by recruiting Tsg101 to the VP40-positive budding site through a PSAP late-domain motif.Virus budding is based on the coordinated interaction of viral proteins and supporting cellular proteins. While many viruses have been shown to use the cellular ESCRT machinery for budding, the means by which this machinery is usurped by different viruses varies (3). Viral matrix proteins are involved mainly in the recruitment of the cellular ESCRT proteins to the sites of viral budding; however, interaction between the respective matrix proteins and the ESCRT machinery is exerted by different late-domain motifs, which in turn recruit different ESCRT proteins. In the end, the outcomes are similar: viral budding is enhanced. The present study aims to understand a frequently observed phenomenon, i.e., that nucleocapsid proteins of viruses positively influence the budding activity of the viral matrix proteins. This observation has also been made with the nucleoprotein NP of Marburg virus (MARV).MARV and Ebola virus (EBOV) belong to the family Filoviridae, whose members are enveloped, nonsegmented, negative-strand RNA viruses of filamentous shape. Filoviruses cause sporadic outbreaks of severe hemorrhagic fever in humans and nonhuman primates in Central Africa, with mortality rates of up to 90% (10). No vaccines or antiviral treatments approved for human use are available to date; however, promising results were obtained in recent years with different experimental vaccine approaches (8).MARV particles are composed of seven structural proteins. The major nucleocapsid protein NP encapsidates the viral genome and, together with the polymerase L, the polymerase cofactor VP35, VP30, and the viral RNA, forms the viral nucleocapsid (1). The nucleocapsids are embedded in a matrix, composed of the matrix proteins VP40 and VP24, which connects the nucleocapsid with the lipid envelope. The only transmembrane glycoprotein, GP, is inserted in the lipid envelope (12, 27).Release of MARV particles takes place at the plasma membrane from sites where all subviral components have been recruited in a spatio-temporally orchestrated fashion. The details of this process are just beginning to be understood. It is known that MARV makes use of the cellular ESCRT machinery to support its own budding (16, 28). Consistent with this, downregulation of VPS4, a central player for the activity of the whole ESCRT machinery, impairs budding of MARV and EBOV severalfold (16, 19). The major player in the budding process of MARV is VP40, the intracellular expression of which results in the formation of peripheral VP40-positive membranous clusters beneath the plasma membrane and the release of filamentous virus-like particles (VLPs) that closely resemble MARV particles (12). VP40 is the only MARV protein that induces budding of filamentous particles and therefore is considered to be the driving force for virus release (11, 27). Further, VP40 is necessary for the redistribution of the nucleocapsids from cytoplasmic inclusions to the sites of particle assembly and budding (4) and finally for the recruitment of the surface glycoprotein GP from the trans-Golgi network into the VP40-positive peripheral clusters where budding takes place (21). As with the matrix proteins of many other enveloped viruses, VP40 contains a late-domain motif, specifically PPPY, that allows recruitment of an ESCRT-associated protein (i.e., Nedd 4), (2, 16, 29).Interestingly, coexpression of VP40 with NP results in enhanced release of VLPs, a phenomenon that was also observed for EBOV and the analogous proteins of other negative-strand RNA viruses (17-18, 26, 28). This suggests that cooperation between the respective nucleoproteins and matrix proteins is important for efficient budding; however, the underlying mechanism is unknown.Our analysis of the MARV NP amino acid sequence revealed that NP possesses several late-domain motifs, which may represent interaction targets for proteins of the cellular ESCRT machinery to enhance particle release. In the present study we show that a C-terminal Tsg101 interaction motif in NP mediated the recruitment of Tsg101 to the budding sites, resulting in increased release of VLPs.  相似文献   

14.
The VP40 matrix protein of Ebola virus buds from cells in the form of virus-like particles (VLPs) and plays a central role in virus assembly and budding. In this study, we utilized a functional budding assay and cotransfection experiments to examine the contributions of the glycoprotein (GP), nucleoprotein (NP), and VP24 of Ebola virus in facilitating release of VP40 VLPs. We demonstrate that VP24 alone does not affect VP40 VLP release, whereas NP and GP enhance release of VP40 VLPs, individually and to a greater degree in concert. We demonstrate further the following: (i). VP40 L domains are not required for GP-mediated enhancement of budding; (ii). the membrane-bound form of GP is necessary for enhancement of VP40 VLP release; (iii). NP appears to physically interact with VP40 as judged by detection of NP in VP40-containing VLPs; and (iv). the C-terminal 50 amino acids of NP may be important for interacting with and enhancing release of VP40 VLPs. These findings provide a more complete understanding of the role of VP40 and additional Ebola virus proteins during budding.  相似文献   

15.
The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm(3). Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3' noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.  相似文献   

16.
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.  相似文献   

17.
Ebola virus VP40 is able to produce virus-like particles (VLPs) in the absence of other viral proteins. At least three domains within VP40 are thought to be required for efficient VLP release: the late domain (L-domain), membrane association domain (M-domain), and self-interaction domain (I-domain). While the L-domain of Ebola VP40 has been well characterized, the exact mechanism by which VP40 mediates budding through the M- and I-domains remains unclear. To identify additional domains important for VP40 assembly/budding, amino acids (212)KLR(214) were targeted for mutagenesis based on the published crystal structure of VP40. These residues are part of a loop connecting two beta sheets in the C-terminal region and thus are potentially important for overall structure and/or oligomerization of VP40. A series of alanine substitutions were generated in the KLR region of VP40, and these mutants were examined for VLP budding, intracellular localization, and oligomerization. Our results indicated that (i) (212)KLR(214) residues of VP40 are important for efficient release of VP40 VLPs, with Leu213 being the most critical; (ii) VP40 KLR mutants displayed altered patterns of cellular localization compared to that of wild-type VP40 (VP40-WT); and (iii) self-assembly of VP40 KLR mutants into oligomers was altered compared to that of VP40-WT. These results suggest that (12)KLR(214) residues of VP40 are important for proper assembly/oligomerization of VP40 which subsequently leads to efficient budding of VLPs.  相似文献   

18.
Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and suppressor of cytokine signaling 1 (SOCS1) in a human monocytic cell line and in HEK293-TLR4/MD2 cells stably expressing the TLR4/MD2 complex. Ebola virus GP was found to interact with TLR4 by immunoprecipitation/Western blot analyses, and Ebola virus GP on VLPs was able to stimulate expression of NF-κB in a TLR4-dependent manner. Interestingly, we found that budding of Ebola virus VLPs was more pronounced in TLR4-stimulated cells than in unstimulated control cells. In sum, these findings identify the host innate immune protein TLR4 as a sensor for Ebola virus GP which may play an important role in the immunopathogenesis of Ebola virus infection.Ebola virus and Marburg virus comprise the Filoviridae family and represent important human pathogens and potential agents of bioterrorism. Currently there are no approved vaccines or specific treatments available to prevent or treat filovirus infections. The filoviruses are the cause of severe hemorrhagic disease in humans (7). Ebola virus initially targets monocytes/macrophages and dendritic cells (DCs), which can lead to the release of proinflammatory cytokines and chemokines (3, 7). A better understanding of the physical and functional interactions between Ebola virus proteins and cellular factors regulating the host innate immune response may reveal novel insights into the pathogenesis of Ebola virus and offer new strategies to inhibit Ebola virus replication.The VP40 matrix protein of Ebola virus is a key structural protein critical for budding virus-like particles (VLPs) and virion egress. Interactions between late budding domains of VP40 and specific host proteins facilitate efficient release of VLPs and infectious virus. Viral proteins other than VP40 also contribute to efficient budding of VLPs. Ebola virus glycoprotein (GP), when coexpressed with VP40, is incorporated into budding VLPs and enhances VLP egress (15), possibly by antagonizing the function of host proteins (12).Several studies have reported the induction of an innate immune response following infection or stimulation of macrophages/monocytes and DCs with Ebola virus or VLPs, respectively (2, 31). For example, incubation of Ebola virus VP40+GP VLPs with DCs led to the induction of interleukin-6 (IL-6), IL-8, NF-κB and ERK1/2 (18, 31). The triggering mechanism by which Ebola virus VLPs stimulate cytokine production is unknown. Here, we present evidence that Ebola virus VLPs stimulate induction of proinflammatory cytokines as well as SOCS1 (a ubiquitin ligase and negative feedback regulator of cytokine production) by interacting with host Toll-like receptor 4 (TLR4). Importantly, Ebola virus VP40+GP VLPs, but not VP40 VLPs, induced cytokine and SOCS1 expression in a TLR4/MD2 dependent manner both in a human monocytic cell line (THP-1 cells) and in 293T cells expressing a functional TLR4/MD2 receptor. These results indicate that the stimulation of TLR4 by Ebola virus envelope GP results in an innate host response, induction of SOCS1 protein, and potential enhancement of virus egress.  相似文献   

19.
Ebola virus (EBOV) is a zoonotic pathogen, the infection often results in severe, potentially fatal, systematic disease in human and nonhuman primates. VP35, an essential viral RNA-dependent RNA polymerase cofactor, is indispensable for Ebola viral replication and host innate immune escape. In this study, VP35 was demonstrated to be phosphorylated at Serine/Threonine by immunoblotting, and the major phosphorylation sites was S187, S205, T206, S208 and S317 as revealed by LC-MS/MS. By an EBOV minigenomic system, EBOV minigenome replication was shown to be significantly inhibited by the phosphorylation-defective mutant, VP35 S187A, but was potentiated by the phosphorylation mimic mutant VP35 S187D. Together, our findings demonstrate that EBOV VP35 is phosphorylated on multiple residues in host cells, especially on S187, which may contribute to efficient viral genomic replication and viral proliferation.  相似文献   

20.
Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible "Velcro-like" manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号