首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human genetic variation is the incarnation of diverse evolutionary history, which reflects both selectively advantageous and selectively neutral change. In this study, we catalogue structural and functional features of proteins that restrain genetic variation leading to single amino acid substitutions. Our variation dataset is divided into three categories: i) Mendelian disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. We characterize structural environments of the amino acid variants by the following properties: i) side-chain solvent accessibility, ii) main-chain secondary structure, and iii) hydrogen bonds from a side chain to a main chain or other side chains. To address functional restraints, amino acid substitutions in proteins are examined to see whether they are located at functionally important sites involved in protein-protein interactions, protein-ligand interactions or catalytic activity of enzymes. We also measure the likelihood of amino acid substitutions and the degree of residue conservation where variants occur. We show that various types of variants are under different degrees of structural and functional restraints, which affect their occurrence in human proteome.  相似文献   

2.
Proteins of the p53 family are expressed in vertebrates and in some invertebrate species. The main function of these proteins is to control and regulate cell cycle in response to various cellular signals, and therefore to control the organism's development. The regulatory functions of the p53 family members originate mostly from their highly-conserved and well-structured DNA-binding domains. Many human diseases (including various types of cancer) are related to the missense mutations within this domain. The ordered DNA-binding domains of the p53 family members are surrounded by functionally important intrinsically disordered regions. In this study, substitution rates and propensities in different regions of p53 were analyzed. The analyses revealed that the ordered DNA-binding domain is conserved, whereas disordered regions are characterized by high sequence diversity. This diversity was reflected both in the number of substitutions and in the types of substitutions to which each amino acid was prone. These results support the existence of a positive correlation between protein intrinsic disorder and sequence divergence during the evolutionary process. This higher sequence divergence provides strong support for the existence of disordered regions in p53 in vivo for if they were structured, they would evolve at similar rates as the rest of the protein.  相似文献   

3.
We present a classification analysis of the mutation spectra of the p53 gene and construct maps of hotspots for the germline (Li-Fraumein syndrome), different types of tumors and their derived cell lines. While spectra from solid tumors share common hotspots with the germline spectrum, they also contain unique sets of somatic hotspots that are not observed in the germline. All these hotspots correspond to amino acid replacements in the DNA-binding interface of p53. The mutation spectra of lymphomas and cell lines derived from lymphomas and lung cancers contained few hotspots compared to solid tumors. Thus, the distribution of hotspots in the p53 gene appears to depend on the tumor type and cell growth conditions; this specificity is missed by the bulk hotspot analysis. A negative correlation was detected between the amino acid replacement propensity in tumors and evolutionary variability: the hotspots are located in the positions that are highly conserved in p53 and its paralogs, p63 and p73. In all the mutation spectra, substitutions leading to amino acid replacements strongly dominate over silent substitutions, indicating that functional sites evolving under strong purifying selection are subject to intensive positive selection in p53-dependent tumors. These results are compatible with the gain-of-function concept of the role of p53 in tumorigenesis.  相似文献   

4.
MOTIVATION: Hydrogen bonds are one of the most important inter-atomic interactions in biology. Previous experimental, theoretical and bioinformatics analyses have shown that the hydrogen bonding potential of amino acids is generally satisfied and that buried unsatisfied hydrogen-bond-capable residues are destabilizing. When studying mutant proteins, or introducing mutations to residues involved in hydrogen bonding, one needs to know whether a hydrogen bond can be maintained. Our aim, therefore, was to develop a rapid method to evaluate whether a sidechain can form a hydrogen-bond. RESULTS: A novel knowledge-based approach was developed in which the conformations accessible to the residues involved are taken into account. Residues involved in hydrogen bonds in a set of high resolution crystal structures were analyzed and this analysis is then applied to a given protein. The program was applied to assess mutations in the tumour-suppressor protein, p53. This raised the number of distinct mutations identified as disrupting sidechain-sidechain hydrogen bonding from 181 in our previous analysis to 202 in this analysis.  相似文献   

5.
The tumor suppressor gene p53 has been identified as the most frequent target of genetic alterations in human cancers. Most of these mutations occur in highly conserved regions in the DNA-binding core domain of the p53 protein, suggesting that the amino acid residues in these regions are critical for maintaining normal p53 structure and function. We previously used molecular dynamics calculations to demonstrate that several amino acid substitutions in these regions that are induced by environmental carcinogens and found in human tumors produce certain common conformational changes in the mutant proteins that differ substantially from the wild-type structure. In order to determine whether these conformational changes are consistent for other p53 mutants, we have now used molecular dynamics to determine the structure of the DNA-binding core domain of seven other environmentally induced, cancer-related p53 mutants, namely His 175, Asp 245, Asn 245, Trp 248, Met 249, Ser 278, and Lys 286. The results indicate that all of these mutants differ substantially from the wild-type structure in certain discrete regions and that some of these conformational changes are similar for these mutants as well as those determined previously. The changes are also consistent with experimental evidence for alterations in structure in p53 mutants determined by epitope detectability using monoclonal antibodies directed against these regions of predicted conformational change.  相似文献   

6.

Background

The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298–306 K).

Methodology/Principal Findings

This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately.

Conclusions

The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure.  相似文献   

7.
8.
9.
10.
11.
12.
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.  相似文献   

13.
Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies that illustrate the association between missense mutations and diseases. In addition, we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally, we report the current state-of-the-art methodologies that predict the effects of mutations on protein stability, the hydrogen bond network, pH dependence, conformational dynamics and protein function.  相似文献   

14.
Twenty-five different temperature-sensitive point mutations at 20 sites in the lysozyme gene of bacteriophage T4 have been identified. All of the mutations alter amino acid side chains that have lower than average crystallographic thermal factors and reduced solvent accessibility in the folded protein. This suggests that the amino acids with well-defined conformations can form specific intramolecular interactions that make relatively large contributions to the thermal stability of the protein. Residues with high mobility or high solvent accessibility are much less susceptible to destabilizing substitutions, suggesting that, in general, such amino acids contribute less to protein stability. The pattern of the sites of ts substitutions observed in the folded conformation of T4 lysozyme suggests that severe destabilizing mutations that primarily affect the free energy of the unfolded state are rare. These results indicate that proteins can be stabilized by adding new interactions to regions that are rigid or buried in the folded conformation.  相似文献   

15.
16.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

17.
18.
19.
The tumor suppressor gene p53 has been identified as the most frequent target of genetic alterations in human cancers. Vinyl chloride, a known human carcinogen that induces the rare sentinel neoplasm angiosarcoma of the liver, has been associated with specific A T transversions at the first base of codons 249 and 255 of the p53 gene. These mutations result in an ArgTrp amino acid substitution at residue 249 and an IlePhe amino acid substitution at residue 255 in a highly conserved region in the DNA-binding core domain of the p53 protein. To determine the effects of these substitutions on the three-dimensional structure of the p53 protein, we have performed molecular dynamics calculations on this core domain of the wild-type and the Trp-249 and Phe-255 mutants to compute the average structures of each of the three forms. Comparisons of the computed average structures show that both mutants differ substantially from the wild-type structure in certain common, discrete regions. One of these regions (residues 204–217) contains the epitope for the monoclonal antibody PAb240, which is concealed in the wild-type structure but accessible in both mutant structures. In order to confirm this conformational shift, tumor tissue and serum from vinyl chloride-exposed individuals with angiosarcomas of the liver were examined by immunohistochemistry and enzyme-linked immunosorbent assay. Individuals with tumors that contained the p53 mutations were found to have detectable mutant p53 protein in their tumor tissue and serum, whereas individuals with tumors without mutations and normal controls did not.  相似文献   

20.
The Balkan endemic nephropathy (BEN) is a significant clinical and scientific problem in need of novel effective therapies. Though many genetic and environmental factors have been investigated the basis, cause, and predisposition to BEN are still unclear. In this study, based on the hypothesis that the genetic pathways leading to BEN might be associated with p53 dysfunction, we screened for p53 gene mutations 90 Bulgarian BEN patients using optimized PCR-SSCP-sequencing analysis. Germline p53 single-base changes were found in blood samples in 10% of BEN cases. Three of them caused amino acid substitutions (p.Arg283Cys, p.Gln317His, and p.Lys321Glu); the other six were either synonymous amino acid substitutions (p.Arg213Arg) or intron polymorphisms (T14766C). To the best of our knowledge, these are the first data investigating tumor suppressor gene mutations in patients with BEN. The obtained results are in support of our hypothesis that p53 gene alterations are possibly involved in BEN genetic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号