首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The soils of mid-Wales in grazed permanent pasture usually exhibit stagnogley features in the top 4–10 cm even though on sloping sites, they are freely drained. Nitrogen is often poorly recovered under these conditions. Our previous studies suggest that continuing loss of available N through concurrent nitrification and denitrification might provide an explanation for poor response to fertilizer N. The work described was designated to further test this proposition. When NH 4 + –N was applied to the surface of intact cores, equilibrated at –5kPa matric potential, about 70% of NH 4 + –N initially present was lost within 56 days of incubation. Study of different sections of the cores showed a rise in NO 3 - level in the surface 0–2.5 cm soil layer but no significant changes below this depth. The imbalance between NO 3 - accumulation and NH 4 + disappearance during the study indicated a simultaneous nitrification and denitrification in the system. Furthermore, the denitrification potential of the soil was 3–4 times greater than nitrification potential so no major build-up of NO 3 - would be expected when two processes occur simultaneously in micro-scale. When nitrification was inhibited by nitrapyrin, a substantial amount of NH 4 + –N remained in the soil and persisted till the end of the incubation. The apparent recovery of applied N increased and of the total amount of N applied, 50% more was recovered relative to without nitrapyrin. It appears that addition of nitrapyrin inhibited nitrification, and consequently denitrification, by limiting the supply of NO 3 - for denitrifying organisms. Emission of N2O from the NH 4 + amended soil cores further confirmed that loss of applied N was the result of both nitrification and denitrification, which occurred simultaneously in adjacent sites at shallow depths. This N loss could account for the poor response to fertilizer N often observed in pastoral agriculture in western areas of the UK.  相似文献   

2.
Summary A study of changes in NH4 + and NO3 –N in Maahas clay amended with (NH4)2SO4 and subjected to 4 water regimes in the presence and absence of the nitrification inhibitor N-Serve (Nitrapyrin) showed that the mineral N was well conserved in the continoous regimes of 50% and 200% (soil weight basis) but suffered heavy losses due to nitrification-denitrification under alternate drying and flooding. N-Serve was effective in minimizing these losses.Another incubation study with 3 soils showed that after 10 cycles of flooding and drying (either at 60°C or 25°C), the ammonification of soil N was enhanced. Nitrification of soil as well as fertilizer NH4 + was completely inhibited upto 4 weeks by the treatments involving drying at high temperature. Flooding and air drying at 25°C, on the other hand, enhanced ammonification of soil N but retarded nitrification. These treatments, however, enhanced both ammonification and nitrification of the applied NH4 + fertilizer N. Under flooded conditions rate of NH4 + production was faster in soils that were dried at 60°C or 25°C and then flooded as compared to air dried soils.It is concluded that N losses by nitrification-denitrification and related N transformations may be considerably altered by alternating moisture regimes. Flooding and drying treatments seem to retard nitrification of soil N but conserve that of fertilizer NH4 + applied after these treatments.  相似文献   

3.
Soil inorganic nitrogen pools, net mineralization and net nitrification rates were compared during the dry season along a chronosequence of upland (terra firme) forest, 3-, 9- and 20-year-old pastures in the western Brazilian Amazon Basin state of Rondônia to investigate the influence of forest conversion to pasture on soil nitrogen cycles. Surface soil (0 to 10 cm) from forest had larger extractable inorganic nitrogen pools than pasture soils. In the forest, NO 3 pools equaled or exceeded NH 4 + pools, while pasture inorganic N pools consisted almost exclusively of NH 4 + . Rates of net N mineralization and net nitrification in seven -day laboratory incubations were higher in the seven - day forest than in the pastures. Net N mineralization rates did not differ significantly among different-aged pastures, but net nitrification rates were significantly lower in the 20-year-old pasture. Higher net N mineralization and net nitrification rates were measured in laboratory and in situ incubations of sieved soil, compared with in situ incubations of intact soil cores. Rates calculated in seven-day incubations were higher than determined by longer incubations. Sieving may increase N mineralization and/or decrease N immobilization compared with intact cores. We concluded that 7-day laboratory incubation of sieved soil was the most useful index for comparing N availability across the chronosequence of forest and pasture sites. High net nitrification rates in forest soils suggest a potential for NO 3 losses either through leaching or gaseous emissions.  相似文献   

4.
The importance of heterotrophic nitrification was studied in soil from a mixed-conifer forest. Three sites in the forest were sampled: a clear cut area, a young stand and a mature stand. In the mature stand, the mineral soil (0–10 cm) and the organic layer were sampled separately. Gross rates of N mineralization and nitrification were measured by15NH 4 + and15NO 3 isotopic pool dilution, respectively. The rates of autotrophic and heterotrophic nitrification were distinguished by use of acetylene as a specific inhibitor of autotrophic nitrification. In samples supplemented with15NH 4 + and treated with acetylene, no15NO 3 was detectable showing that the acetylene treatment effectively blocked the autotrophic nitrification, and that NH 4 + was not a substrate for heterotrophic nitrification. In the clear cut area, autotrophic nitrification was the most important NO 3 generating process with total nitrification (45 ug N kg–1h–1) accounting for about one-third of gross N mineralization (140 ug N kg–1 h–1). In the young and mature forested sites, gross nitrification rates were largely unaffected by acetylene treatment indicating that heterotrophic nitrification dominated the NO 3 generating process in these areas. In the mature forest mineral and organic soil, nitrification (heterotrophic) was equal to only about 5% of gross mineralization (gross mineralization rates of 90 ug N kg–1 h–1 mineral; 550 ug N kg–1 h–1 organic). The gross nitrification rate decreased from the clear cut area to the young forest area to the mineral soil of the mature forest (45; 17; 4.5 ug kg–1 h–1 respectively). The15N isotope pool dilution method, combined with acetylene as an inhibitor of autotrophic nitrification provided an effective technique for assessing the importance of heterotrophic nitrification in the N-cycle of this mixed-conifer ecosystem.  相似文献   

5.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

6.
周旋  吴良欢  董春华  贾磊 《生态学报》2019,39(5):1804-1814
揭示尿素类肥料添加生化抑制剂组合后,在黄泥田土壤中硝态氮(NO~-_3-N)和铵态氮(NH~+_4-N)的淋溶损失规律。采用室内土柱淋溶培养试验,研究脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂2-氯-6-(三氯甲基)吡啶(CP)单独添加及配合施用对尿素和尿素硝铵(300 kg N/hm~2)中氮(N)素在土体中淋溶损失的影响。结果表明:尿素和尿素硝铵处理淋溶液中NH~+_4-N和NO~-_3-N浓度均呈先升后降的变化趋势,而出峰时间不一。NH~+_4-N和NO~-_3-N淋失量随着时间的延长,处理间差异逐渐变大。NBPT处理可以减缓尿素水解,有效抑制NH~+_4-N生成,延缓其出峰时间,减少NH~+_4-N流失;CP处理可以有效抑制NH~+_4-N向NO~-_3-N转化,减少NO~-_3-N流失。与单独添加NBPT和CP处理相比,两者配施对N素淋溶损失有明显的协同抑制效果在黄泥田土壤中,既能减缓尿素水解,保持土壤中较高NH~+_4-N含量,又能降低淋溶液中NO~-_3-N浓度。培养结束时(第72天),UAN处理中NO~-_3-N、NH~+_4-N、矿质态N淋失总量及硝化率较U处理高34.39%、5.32%、31.72%和15.71%。U+NBPT、U+CP和U+NBPT+CP处理较U处理分别显著降低NO~-_3-N淋失总量达15.58%、114.77%和73.45%;UAN+NBPT、UAN+CP和UAN+NBPT+CP处理较UAN处理分别显著降低达15.88%、54.87%和37.46%。不同处理NO~-_3-N淋失总量大小表现为:UAN UAN+NBPT U UAN+NBPT+CP U+NBPT UAN+CP U+NBPT+CP U+CP CK。在一定施肥量条件下,NBPT和CP单独施用或配施均可降低黄泥田土壤中NO~-_3-N累积淋失量。对各处理淋溶液中NO~-_3-N淋失量(y)随时间(x)的变化进行拟合,其中以线性方程(y=ax+b)的拟合度较高,且各抑制剂处理a、b值均存在明显差异。总体认为,在黄泥田土壤中施用CP及其与NBPT配施可以显著降低土壤NO~-_3-N淋溶损失,减少N素淋失风险,提高肥料利用率。  相似文献   

7.
Nitrification mediated nitrogen immobilization in soils   总被引:2,自引:0,他引:2  
Summary The influence of nitrification on the status of soil organic nitrogen is examined by applying NH 4 + -15N to the soil in the absence and the presence of a selective inhibitori.e. nitrapyrin. Parallel with nitrification, formation of organic nitrogen from the added fertilizer was followed. In the soil examined (pH 6.5, 4% organic carbon),ca. 55% of the fertilizer-N was immobilized during the 60 days incubation period, as a consequence of the nitrification process. Nitrification not only appeared to contribute to the binding of added mineral nitrogen onto soil organic matter, but also to re-immobilization of mineralised soil nitrogen.  相似文献   

8.
为探索山东南四湖沿岸麦玉轮作区玉米季内减少土壤无机氮素淋溶和径流损失的施肥策略,降低其对湖区水质产生的潜在威胁,采用田间原位安装淋溶水采集器和地表水径流池收集水样结合室内分析不同形态氮含量的方法,研究了不同施肥模式下无机氮素淋溶和径流损失特征。结果表明:土壤淋溶水量及地表水径流量与降水呈显著正相关关系,其水量受秸秆类物质还田的影响;硝态氮(NO3--N)与铵态氮(NH4 -N)随地表水径流损失的浓度及总量均明显高于淋溶水,由径流方式损失的氮素占2/3以上,是氮素以水溶液形式流失的主要途径;淋溶和径流均以NO3--N损失为主(径流损失中NO3--N占总量的82.9%-90.8%,淋溶损失中NO3--N占63.5%-72.9%),地表径流水NO3--N浓度对水质有较大影响,但土壤淋溶水NO3--N浓度对地下水污染不构成威胁;农民习惯施肥处理在玉米整个生育期淋溶和径流氮损失最高。在保证玉米产量前提下,降低氮素流失造成湖区的污染,平衡施用氮磷钾肥、施用控释氮肥、有机替代无机和秸秆还田等措施均可在沿南四湖区农田使用。  相似文献   

9.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

10.
Summary The effects of soil acidification (pH values from 6.5 to 3.8), and subsequent leaching, on levels of extractable nutrients in a soil were studied in a laboratory experiment. Below pH 5.5, acidification resulted in large increases in the amounts of exchangeable Al in the soil. Simultaneously, exchangeable cations were displayed from exchange sites and Ca, Mg, K and Na in soil solution increased markedly. With increasing soil acidification, increasing amounts of cations were leached; the magnitude of leaching loss was in the same order as the cations were present in the soil: Ca2+>Mg2+>K+>Na+. Soil acidification appeared to inhibit nitrification since in the unleached soils, levels of NO 3 clearly declined below pH 5.5 and at the same time levels of NH 4 + increased greatly. Significant amounts of NH 4 + and larger amounts of NO 3 , were removed from the soil during leaching. Concentrations of NaHCO3-extractable phosphate remained unchanged between pH 4.3 and 6.0 but were raised at higher and lower pH values. No leaching losses of phosphate were detected. For the unleached soils, levels of EDTA-extractable Mn and Zn increased as the soil was acidified whilst levels of extractable Fe were first decreased and then increased greatly and those for Cu were decreased slightly between pH 6.5 and 6.0 and then unaffected by further acidification. Significant leaching losses of Mn and Zn were observed at pH values below 5.5 but losses of Fe were very small and those of Cu were not detectable.  相似文献   

11.
华南赤红壤无机复合肥氮磷淋失特征   总被引:12,自引:0,他引:12  
采用室内土柱淋溶模拟试验,研究了不同施肥水平下无机复合肥中氮和磷在华南赤红壤中的淋失特征.结果表明: 铵态氮、硝态氮和总氮淋失量均随施肥量增加而提高;肥料中氮的淋失率在36.8%~49.2%之间,总氮淋失量(y)与施肥量(x)之间的回归方程为y=0.3667x+66.483(R2=0.992);铵态氮和总氮的淋失主要集中在前5次淋洗,硝态氮的淋失持续时间更长.施肥量对可溶性磷淋失量无显著影响,但颗粒磷和总磷淋失量均随施肥量增加呈上升趋势;肥料磷淋失率在0.002%~0.010%之间,总磷淋失量(y)与施肥量(x)之间的回归方程为y=7e-5x+0.0538(R2=0.931);磷的淋失动态与氮显著不同,为缓慢的持续累积过程.硝态氮与铵态氮淋失量比值和可溶性磷与颗粒磷淋失量比值均随施肥量增加呈下降趋势.  相似文献   

12.
Fate of urine nitrogen on mineral and peat soils in New Zealand   总被引:2,自引:0,他引:2  
A field lysimeter experiment was conducted over 150 days to examine the fate of synthetic urinary nitrogen (N) applied to peat and mineral soils, with and without a water table. At the start of the winter season, synthetic urine labelled with 15N, was applied at 500 kg N ha–1. Plant uptake, leaching losses and nitrous oxide (N2O) fluxes were monitored. Total plant uptake ranged from 11% to 35% of the urine-N applied depending on soil type and treatment. Plant uptake of applied N was greater in the presence of a water table in the mineral soil. Nitrate-N (NO3 --N) was only detected in leachates from the mineral soil, at concentrations up to 146 g NO3 --N mL–1. Presence of a water table in the mineral soil reduced leaching losses (as inorganic-N) from 47% to 6%, incrased plant uptake and doubled apparent denitrification losses. In the peat soils leaching losses of applied urine-N as inorganic-N were low (<5%). Losses of N as N2O were greater in the mineral soil than in the peat soils, with losses of 3% and <1% of N applied respectively after 100 days. Apparent denitrification losses far exceeded N2O losses and it is postulated that the difference could be due to dinitrogen (N2) loss and soil entrapment of N2.  相似文献   

13.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

14.
郑洁  程梦华  栾璐  孔培君  孙波  蒋瑀霁 《生态学报》2022,42(12):5022-5033
为探讨酸性红壤根际氨氧化微生物群落以及硝化作用对不同秸秆还田处理的响应,基于中国科学院鹰潭红壤生态实验站设置的秸秆还田长期试验平台(9年),采用荧光定量PCR和高通量测序技术,研究不同秸秆还田处理(不施肥(CK);氮磷钾肥(NPK);氮磷钾肥+秸秆(NPKS);氮磷钾肥+秸秆猪粪配施(NPKSM);氮磷钾肥+秸秆生物炭(NPKB))下玉米根际土壤氨氧化古菌(ammonia-oxidizing archaea, AOA)和细菌(ammonia-oxidizing bacteria, AOB)丰度和群落结构的变化,揭示了秸秆还田对根际氨氧化微生物群落结构和硝化潜势(potential nitrification activity, PNA)的影响机制。结果发现:相比CK和NPK处理,秸秆还田显著提高了土壤养分含量和硝化潜势,其中有机碳(SOC)、全氮(TN)、全磷(TP)、速效磷(AP)、速效钾(AK)、硝态氮(NO~-3-N)和铵态氮(NH~+4-N)含量显著增加,NPKSM处理对土壤肥力提升效果最佳。AOA的硝化潜势显著高于AOB,表明AOA...  相似文献   

15.
Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer’s field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0). An ensemble of 29 global circulation models (GCM) was used to simulate different climate scenarios for two Representative Circulation Pathways (RCP6.0 and RCP8.5) and evaluate potential nitrate leaching and biomass production in this region over the next 50 years. Data collected from two growing seasons showed that the SALUS model adequately simulated both nitrate leaching and crop yield, with a relative error that ranged between 0.4% and 13%. Nitrate losses under RCP8.5 were lower than under RCP6.0 only for NMIN. Accordingly, levels of plant N uptake, N use efficiency and biomass production were higher under RCP8.5 than RCP6.0. Simulations under both RCP scenarios indicated that the NMIN treatment demonstrated both the highest biomass production and NO3- losses. The newly proposed best management practice (BMP), developed from crop N uptake data, was identified as the optimal N fertilizer management practice since it minimized NO3- leaching and maximized biomass production over the long term.  相似文献   

16.
Nitrous oxide (N 2O), nitric oxide (NO), denitrification losses and NO3 leaching from an irrigated sward were quantified under Mediterranean conditions. The effect of injected pig slurry (IPS) with and without the nitrification inhibitor dicyandiamide (DCD) was evaluated and also compared with that of a surface pig slurry application (SPS) and a control treatment (Control) without fertiliser. After application, fluxes of NO and N 2O peaked from SPS (3.06 mg NO-N m –2 d –1 and 108 mg N 2O-N m –2 d –1) and IPS (3.50 mg NO-N m –2 d –1 and 105 mg N 2O-N m –2 d –1). However, when irrigation was applied, N 2O and NO emissions declined. The total N 2O and denitrification losses were slightly large from IPS than from SPS, although the differences were not significant (P < 0.05). Emission of NO was not affected by the method of pig slurry application. DCD inhibited nitrification during the first 20–30 days and reduced N 2O and NO emissions from pig slurry by at least 46% and 37%, respectively. Considering the 215 days following pig slurry application, the emission factor of N 2O based on N fertiliser was 1.60% (SPS), 2.95% (IPS), and 0.50% (IPS + DCD). The emission factor for NO was 0.14% (SPS), 0.12% (IPS), and 0.02% (IPS + DCD). Environmental conditions of the crop favoured the denitrification process as the most important source of N 2O during the experimental period. The differences in the denitrification rate between treatments could be explained by the pattern of water soluble carbon (WSC), that was the highest value in injected pig slurry (with and without DCD). Due to low drainage (5% of water applied), leaching losses of NO3 were lower than those of denitrification from the upper soil layer (0–10 cm) in all treatments and especially with IPS + DCD, where the nitrification inhibitor was very efficient in reducing leaching losses.  相似文献   

17.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

18.
Fire is a major factor controlling global carbon (C) and nitrogen (N) cycling. While direct C and N losses caused by combustion have been comparably well established, important knowledge gaps remain on postfire N losses. Here, we quantified both direct C and N combustion losses as well as postfire gaseous losses (N2O, NO and N2) and N leaching after a high‐intensity experimental fire in an old shrubland in central Spain. Combustion losses of C and N were 9.4 Mg C/ha and 129 kg N/ha, respectively, representing 66% and 58% of initial aboveground vegetation and litter stocks. Moreover, fire strongly increased soil mineral N concentrations by several magnitudes to a maximum of 44 kg N/ha 2 months after the fire, with N largely originating from dead soil microbes. Postfire soil emissions increased from 5.4 to 10.1 kg N ha?1 year?1 for N2, from 1.1 to 1.9 kg N ha?1 year?1 for NO and from 0.05 to 0.2 kg N ha?1 year?1 for N2O. Maximal leaching losses occurred 2 months after peak soil mineral N concentrations, but remained with 0.1 kg N ha?1 year?1 of minor importance for the postfire N mass balance. 15N stable isotope labelling revealed that 33% of the mineral N produced by fire was incorporated in stable soil N pools, while the remainder was lost. Overall, our work reveals significant postfire N losses dominated by emissions of N2 that need to be considered when assessing fire effects on ecosystem N cycling and mass balance. We propose indirect N gas emissions factors for the first postfire year, equalling to 7.7% (N2‐N), 2.7% (NO‐N) and 5.0% (N2O‐N) of the direct fire combustion losses of the respective N gas species.  相似文献   

19.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

20.
When following the pattern of the disappearance of NH 4 + –N from ammonium sulfate applied to the flooded soil-rice plant system (field and greenhouse experiments) during a growing season, it was observed that the lowest NH 4 + –N level coincided with the highest value of NR activity in the leaves. Nitrate was detected in both the root and shoot systems of the rice plants and autotrophic nitrifiers (Nitrosomonas and Nitrobacter) were particularly abundant. Since it was also demonstrated in this work that the NR activity of rice plants grown with nitrate fertilization (growth chamber culture experiments) was inducible by its substrate, it can be assumed that NH 4 + –N oxidation takes place in the water-logged soil studied. Therefore, the occurrence of the nitrification process following NH 4 + –N fertilizer application can be predicted by thein vitro orin situ evaluation of the NR activity of the rice leaf as an indicator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号