首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms for the uptake of K+, Na+ and Cl- develop sequentially in thin slices of beetroot tissue washed under aerobic conditions. Actinomycin D inhibited or prevented the development of K+, Na+ and Cl- uptake mechanisms when added to freshly cut slices, but had no effect on net ion uptake when added after the development of the ion uptake mechanisms. The use of puromycin as a specific inhibitor of protein synthesis was unsatisfactory as it caused leakage of pigments and excessive loss of ions from the disks. Cycloheximide prevented the development of ion uptake mechanisms when added at the start of the experiment, but when added after the development of ion uptake mechanisms its inhibitory effect did not become apparent until after a certain time interval which varied from 3 hours for Cl- to 25 hours for K+ uptake in the same experiment. p-Fluorophenylalanine caused an appreciable shortening of the time required for the development of Na+ and K+ uptake capabilities, while it completely prevented the development of a Cl- uptake mechanism. p-Fluorophenylalanine-induced early uptake of Na+ and K+, however, was followed by periods of net leakage of these ions. It is suggested that the development of ion uptake mechanisms depends on the production of m-RNA, which appears to be relatively stable after its synthesis. The synthesis and decay characteristics of specific proteins required for the ion uptake mechanisms appear to differ for each ion species.  相似文献   

2.
Human lymphocytes contain a large, saturable fraction of K+ that exchanges slowly with K+ in the external medium, and a small non-saturable fraction that exchanges rapidly. We determined whether or not Na+ exchanges in a similar manner with external Na+. Cells were pre-equilibrated to ensure absence of net ion movements. Efflux was studied by loading with 22Na and transferring without washing to a non-labeled medium. Influx was studied by transferring to labeled medium and separating large samples of cells at 6,000g. There are fast, intermediate, and slow fractions of Na+ exchange, with half-times of 2, 14, and 120 minutes. At normal external K+, most cell Na+ exchanges rapidly, while at lower external K+ the Na+ that replaces cell K+ exchanges slowly. Parallel sources of fast and slow fractions, such as extracellular ones and subpopulations of cells, were ruled out by simultaneous 42K and 22Na fluxes and by a quantitative analysis of the combined K+ and Na+ content and flux data over a range of external K+ and Na+ levels. Five possible models of ion fluxes occurring in series were considered. Surface matrix, surface binding sites, and cytoplasmic channels with rapid nuclea exchange were eliminated as sources of the fast fractions. Therefore, the fast fractions of K+ and Na+ must reflect the permeability of the surface membrane. This left only two possible sources of the slow fractions. One, a subcellular compartment (e.g., nucleus), was eliminated by the combined content and flux data. We conclude that the slow fractions of ion flux are rate-limited by adsorption onto and desorption from cellular macromolecules. The data support the association-induction hypothesis and are understood by reference to two fundamental concepts: that of rapid solute exclusion from cell water existing in a polarized state; and that of solute accumulation limited by adsorption onto fixed anionic sites within the cell.  相似文献   

3.
J. Barber  Y. J. Shieh 《Planta》1973,111(1):13-22
Summary The rate of Na+/Na+ exchange as measured with 24Na+ in Na+-rich cells of Chlorella pyrenoidosa is governed by a single rate constant and saturates with increasing external Na+ concentration. The K mvalue for this process is 0.8 mM Na+ and the maximum rate of exchange in illuminated cells is about 5 pmoles cm-2 sec-1. These values contrast with a K mof 0.18 mM K+ and maximum rate of about 17 pmoles K+·cm-2·sec-1 for net K+ influx. Although the Na+/Na+ exchange was only slightly sensitive to light it was inhibited by the uncouplers CCCP and DNP and by the energy transfer inhibitor DCCD. This inhibition of the rate of Na+/Na+ exchange was not accompanied by a loss of internal Na+. Both the effect of external K+ on 24Na+ influx into Na+-rich cells and the inhibition of net K+ uptake by the presence of external Na+ indicates that Na+/Na+ and K+/Na+ exchanges share the same carrier and that the external site of this carrier has a three to four times higher affinity for K+ over Na+.  相似文献   

4.
Lithium transport across the cell membrane is interesting in the light of general cell physiology and because of its alteration during numerous human diseases. The mechanism of Li+ transfer has been studied mainly in erythrocytes with a slow kinetics of ion exchange and therefore under the unbalanced ion distribution. Proliferating cultured cells with a rapid ion exchange have not been used practically in study of Li+ transport. In the present paper, the kinetics of Li+ uptake and exit, as well as its balanced distribution across the plasma membrane of U937 cells, were studied at minimal external Li+ concentrations and after the whole replacement of external Na+ for Li+. It is found that a balanced Li+ distribution attained at a high rate similar to that for Na+ and Cl? and that Li+/Na+ discrimination under balanced ion distribution at 1–10 mM external Li+ stays on 3 and drops to 1 following Na, K-ATPase pump blocking by ouabain. About 80% of the total Li+ flux across the plasma membrane under the balanced Li+ distribution at 5 mM external Li+ accounts for the equivalent Li+/Li+ exchange. The majority of the Li+ flux into the cell down the electrochemical gradient is a flux through channels and its small part may account for the NC and NKCC cotransport influxes. The downhill Li+ influxes are balanced by the uphill Li+ efflux involved in Li+/Na+ exchange. The Na+ flux involved in the countertransport with the Li+ accounts for about 0.5% of the total Na+ flux across the plasma membrane. The study of Li+ transport is an important approach to understanding the mechanism of the equivalent Li+/Li+/Na+/Na+ exchange, because no blockers of this mode of ion transfer are known and it cannot be revealed by electrophysiological methods. Cells cultured in the medium where Na+ is replaced for Li+ are recommended as an object for studying cells without the Na,K-ATPase pump and with very low intracellular Na+ and K+ concentration.  相似文献   

5.
In this paper, we continue our analysis of Na+ and K+ uptake by mid-vegetative Spergularia marina (L.) Griseb. plants growing on 0.2x sea water medium, with attention to the relationship of ion uptake and growth. In the first part of the paper, growth analysis techniques are used to compare relative growth rates (RGR) and relative accumulation rates (RAR) for Na+ and K+. Under constant growth conditions, a high correlation between RGR and RAR indicated that growth and accumulation of both ions were well balanced, resulting in Na+ and K+ concentrations within the plants which were stable after adjustement to the saline medium. The analysis confirmed the existence of a Na+ -related growth stimulation in S. marina and an associated increase in the efficiency of K+ utilization for growth. When plants were subjected to more rapid salinization and step changes in the light intensity of the growth chamber, RGR and RAR were again similar, even through the discontinuities in growth conditions, suggesting that growth and ion accumulation were co-regulated rather than simply correlated. The growth analysis data were then transformed to give net uptake rates for Na+ and K+ and the results were compared to those of isotope studies under similar growth conditions. In roots, the rates estimated by the two techniques differed substantially; net uptake rates reflected primarily growth, while isotope studies indicated a substantial ion exchange rate between mature cells and the growth medium. The rates of transport of either Na+ or K+ to the shoot were very similar using the two estimation techniques. As the rates measured with isotopes were taken from studies lasting at most a few hours, this suggested a very rapid turnover of the upwardly mobile Na+ and K+ pools in the roots.  相似文献   

6.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 · 10?3 M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl?) outward net flux uncoupled from net Na+ movement. Net K+ (Cl?) outward flux was half-maximally inhibited by 2 μM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

7.
1. When yeast oxidizes propan-2-ol in the presence of KCl no uptake of K+ occurs. 2. When propionate is added to suspensions containing propan-2-ol, or if the suspensions are bubbled with CO2, a considerable uptake of K+ occurs. 3. Maximum K+ uptake occurs at a propionate concentration of 2mm. 4. The addition of 20mm-propionate to the suspension lowers the intracellular pH of the yeast from a resting value in the region of 6.2 to approx. 5.6. 5. When K+ uptake is measured in the presence of 20mm-propionate, progressive changes in the rate of K+ uptake and intracellular pH occur. The optimum rate of K+ uptake occurs at an intracellular pH of 5.70. 6. The effect of both intra- and extra-cellular pH on K+–K+ exchange was studied and an optimum rate was found at an extracellular pH of 5.35, the corresponding intracellular pH being 6.44. 7. When a Na+-loaded yeast oxidizes propan-2-ol in the presence of KCl, a steady efflux of Na+ and influx of K+ occurs. The addition of 10mm-propionate to the suspension markedly inhibited the Na+ efflux but only slightly decreased the K+ influx. 8. The effect of both extra- and intra-cellular pH on Na+ efflux was studied with propan-2-ol and with glucose. The results can be best interpreted in terms of intracellular pH changes, and an optimum was obtained at approx. pH6.40.  相似文献   

8.
In a previous study, evidence was presented for an external Na+-dependent, ouabain-insensitive component of Na+ efflux and an external K+-dependent component of K+ efflux in the Ehrlich ascites tumor cell. Evidence is now presented that these components are inhibited by the diuretic furosemide and that under conditions of normal extracellular Na+ and K+ they represent Na+-for-Na+ and K-+for-K+ exchange mechanisms. Using 86Rb to monitor K+ movements, furosemide is shown to inhibit an ouabain-insensitive component of Rb+ influx and a component of Rb+ efflux, both representing approx. 30% of the total fux. Inhibition of Rb+ efflux is greatly reduced by removal of extracellular K+. Furosemide does not alter steady-state levels of intracellular K+ and it does not prevent cells depleted of K+ by incubation in the cold from regaining K+ upon warming. Using 22Na to monitor Na+ movements, furosemide is shown to inhibit an ouabain-insensitive component of unidirectional Na+ efflux which represents approx. 22% of total Na+ efflux. Furosemide does not alter steady-state levels of intracellular Na+ and does not prevent removal of intracellular Na+ upon warming from cells loaded with Na+ by preincubation in the cold. The ability of furosemide to affect unidirectional Na+ and K+ fluxes but not net fluxes is consistent with the conclusion that these components of cation movement across the cell membrane represent one-for-one exchange mechanisms. Data are also presented which demonstrate that the uptake of α-aminoisobutyrate is not affected by furosemide. This indicates that these components of cation flux are not directly involved in the Na+-dependent amino acid transport system A.  相似文献   

9.
Using the antibiotic Nystatin, we have developed a systematic method for the preparation of red blood cells with independently selected levels of intracellular Na+ concentrations and water content. Such cells provided an experimental model to study the effect of Na+/K+ pump stimulation on red cell water content. Even in initially dehydrated cells, stimulation of the Na+/K+ pump by elevated intracellular Na+ caused subsequent further loss of cell water. Cell water loss was reflected in decreased monovalent cation content per unit mass of hemoglobin and by a shift in the density distribution of the cell populations to higher densities on discontinuous Stractan gradients. We conclude that the 3 Naout+ : 2 Kin+ stoichiometry of the Na+/K+ pump results in a net desalting effect with increased pump activity. Under the conditions of these experiments, the cell appears to have no effective mechanism to compensate for a net loss of ions and water.  相似文献   

10.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

11.
The kinetics of uptake and loss of Na+ have been studied using radioisotopic tracer techniques in cells of the cyanobacterium Synechocystis PCC6714 exposed to hyperosmotic stress. Cells transferred from a fresh-water-based medium to NaCl at 300–1000 mmol·dm−3 showed net Na+ uptake during the first 2 min following transfer, with the intracellular Na+ level at 2 min increasing as a direct function of the external NaCl concentration. Further incubation of cells in low-level hypersaline media (350–500 mmol · dm−3 NaCl) led to a marked reduction in cell Na+ within 20 min, indicating an efficient active Na+ extrusion system. In contrast, cells maintained in more extreme hypersaline media showed little (750 mmol · dm−3 NaCl) or no (1000 mmol · dm−3 NaCl) net Na+ extrusion following upshock. Cells grown in a saline medium (with NaCl at 500 mmol · dm−3 showed a greatly reduced net Na+ uptake after 2 min in media containing higher levels of NaCl. However, net Na+ uptake was also observed when these cells were downshocked to media containing 50–200 mmol · dm−3 NaCl. This is the first demonstration of downshock-induced Na+ accumulation in a microbial cell. Time-courses for Na+ extrusion in cells downshocked from 500 mmol · dm−3 to 100 mmol · dm−3 NaCl were similar to those for cells upshocked from freshwater to 500 mmol · dm−3 NaCl, requiring approximately 30 min to reach their lowest values. Net Na+ extrusion in upshocked cells was found to be markedly sensitive to the external K+ concentration, with limited net Na+ extrusion in the absence of external K+ and maximal reductions in cell Na+ in media containing K+ at 1–10 mmol · dm−3. Temperature was also shown to affect uptake and loss of cell Na+ during upshock: cells maintained at 5°C showed no capacity for net Na+ extrusion, while higher temperatures (up to 35°C) led to a progressive reduction in the amount of cell Na+ at 2 min following upshock and also in the rate of net Na+ extrusion after this time.  相似文献   

12.
Poole RJ 《Plant physiology》1969,44(4):485-490
The flux ratio (influx/efflux) of K+ across the plasmalemma of beet cells at an external potassium concentration of 0.6 mm does not respond to changes of membrane potential in the manner expected for the free diffusion of ions. The K+ efflux is affected by the presence of adsorbed Ca2+, but is apparently unrelated to the electrical potential or to the net uptake of potassium. The K+ efflux is greater than the efflux of the sulfate and organic anions which are accumulated with potassium, and is partially dependent on the presence of external potassium. Thus the loss of 42K from the cell does not appear to be a leakage of freely diffusing K+ ions, nor a leakage of ion pairs, but a carrier-mediated transport or exchange of potassium across the cell membrane.  相似文献   

13.
The K+ content and the K+ flux were measured in the cell lines ME2 and MF2 isolated from plasmocytoma MOPC 173. Both cell lines were shown to have the same K+ content and the same K+ steady state flux per unit of surface area.In ME2 cells, no modification of the exchange movement was observed during contact inhibition. However, contact-inhibited cells exhibited an increased resistance to depletion, characterized by a lower K+ net movement.The (Na+ + K+)-ATPase measured in homogenates is poorly correlated to in vivo cation fluxes both because of the enhancement due, presumably, to the drop of K+ concentration on the cytoplasmic face of the membrane and because of losses during preparation which can be conspicuous, especially in contact-inhibited cells.The K+ net flux is considerably increased when the intracellular K+ level is reduced after preincubation of the cells in a K+-free medium. Thus, internal K+ seems to regulate the K+ influx.  相似文献   

14.
Summary The coupling of ion transport to energy sources in the light and in the dark in green cells ofAtriplex spongiosa leaves was investigated using light of different qualities, an inhibitor of electron transport (dichlorophenyl dimethyl urea), and an uncoupler (p-CF3O-carbonyl cyanide phenylhydrazone). Two different mechanisms of ion uptake were, distinguished. (1) A light-dependent Cl pump which is linked to light-dependent K+ uptake. The energy for this pump is probably derived from photosynthetic electron transport or from nicotinamide adenine dinucleotide phosphate, reduced form. This mechanism is dichlorophenyl dimethyl urea-sensitive and enhanced by uncouplers. (2) A mechanism independent of light, which operates at the same rate in the light and in the dark. This mechanism is sensitive to uncouplers. It is probably aK–Na exchange mechanism since K+ and Cl uptake and a small net uptake of H+ are balanced by Na+ loss.  相似文献   

15.
The wheat root high-affinity K+ transporter HKT1 functions as a sodium-coupled potassium co-uptake transporter. At toxic millimolar levels of sodium (Na+), HKT1 mediates low-affinity Na+ uptake while potassium (K+) uptake is blocked. In roots, low-affinity Na+ uptake and inhibition of K+ uptake contribute to Na+ toxicity. In the present study, the selectivity among alkali cations of HKT1 expressed in Xenopus oocytes and yeast was investigated under various ionic conditions at steady state. The data show that HKT1 is highly selective for uptake of the two physiologically significant alkali cations, K+ and Na+ over Rb+, Cs+ and Li+. In addition, Rb+ and Cs+, and an excess of extracellular K+ over Na+, are shown to partially reduce or block HKT1-mediated K+-Na+ uptake. Furthermore, K+, Rb+ and Cs+ also effectively reduce outward currents mediated by HKT1, thereby causing depolarizations. In yeast, HKT1 can produce high-affinity Rb+ uptake at approximately 15-fold lower rates than for K+. Rb+ influx in yeast can be mediated by the ability of the yeast plasma membrane proton pump to balance the 35-fold lower HKT1 conductance for Rb+. A model for HKT1 activity is presented involving a high-affinity K+ binding site and a high-affinity Na+ binding site, and competitive interactions of K+, Na+ and other alkali cations for binding to these two sites. Possible implications of the presented results for physiological K+ and Na+ uptake in plants are discussed.  相似文献   

16.
10?7 M valinomycin affects human lymphocytes in the following manner: (1) it is non-toxic; (2) it inhibits mitogenesis; (3) it causes a reduction in cell ATP; and (4) it causes a marked increase in steady-state Na+ exchange. However, it has a minimal effect on cell ion (K+, Na+, Ca2+, Mg2+) contents and no effect whatever on K+ exchange. Neither the fast nor the slow fraction of steady-state K+ exchange is affected by 10?7 M valinomycin. The various reported effects of valinomycin on lymphocyte functions cannot be assumed to be due to changes in plasma membrane K+ permeability. The mechanism of the increase in steady-state Na+ exchange, and whether or not it is related to inhibition of mitogenesis, are unsettled issues.  相似文献   

17.
Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

18.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

19.
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor‐regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em) measurements. Turgor recovery was inhibited by Gd3+, tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl‐induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na+ but not K+ and Cl? in the incubation media. Na+ uptake was strongly decreased by amiloride and changes in net Na+ and H+ fluxes were oppositely directed. This suggests active uptake of Na+ in V. erythrospora mediated by an antiport Na+/H+ system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K+ efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.  相似文献   

20.
C. I. Ullrich-Eberius 《Planta》1973,109(2):161-176
Summary Ion uptake was studied using 32P, 35S, 22Na and 42K as tracers in synchronized cells of Ankistrodesmus, which were slightly starved with respect to the ions to be investigated. In the light and in the dark, phosphate uptake is maximal between pH 5.5 and 6.5. Whereas Na+ in comparison to K+ enhances phosphate uptake in the light (8 to 9-fold) and in the dark, Ca++ exerts only a slightly stimulatory effect. The stimulation of phosphate binding by Na+ occurs rapidly, even after less than 5 sec of incubation, and also in the presence of an equimolar concentration of K+.The pH-dependence of Na+-uptake in the light and in the dark is comparable to a dissociation curve: Na+-uptake increases with decreasing extracellular H+-concentration and is inversely proportional to phosphate uptake in the absence of Na+. The light:dark ratio of Na+-uptake at pH 8 amounts to 7:1. Mere adsorption of Na+ is similarly dependent on the pH. K+ strongly competes with Na+-uptake, even at pH 8. K+-uptake proceeds in a quite different manner from Na+-uptake and has an optimum at pH 7.Sulfate is taken up linearly in a biphasic process as a function of time; the pH-optimum lies between pH 7.5 and 8. K+ but not Na+ slightly enhances sulfate uptake.The Na+-enhancement of phosphate uptake can be related neither to a sodium-potassium exchange pump nor to a photosynthesis-dependent ion-exchange reaction.The results suggest that the uptake of phosphate, Na+ and K+, and the influence of alkali cations on phosphate uptake, but not sulfate uptake, are strongly dependent on fixed charges of the plasmalemma or even of the cell wall. These fixed charges may even prevent an active ion uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号