首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundC-reactive protein (CRP) is a plasma pentraxin family protein that is massively induced as part of the innate immune response to infection and tissue injury. CRP and other pentraxin proteins can activate a complement pathway through C1q, collectins, or on microbe surfaces. It has been found that a lectin-like oxidized LDL receptor 1 (LOX-1), which is an endothelial scavenger receptor (SR) having a C-type lectin-like domain, interacts with CRP to activate the complement pathway using C1q. However it remains elusive whether other lectins or SRs are involved in CRP-mediated complement activation and the downstream effect of the complement activation is also unknown.MethodsWe prepared CHO/ldlA7 cells expressing collectin placenta-1 (CL-P1) and studied the interaction of CRP with cells. We further used ELISA for testing binding between proteins. We tested for C3 fragment deposition and terminal complement complex (TCC) formation on HEK293 cells expressing CL-P1.ResultsHere, we demonstrated that CL-P1 bound CRP in a charge dependent manner and the interaction of CRP with CL-P1 mediated a classical complement activation pathway through C1q and additionally drove an amplification pathway using properdin. However, CRP also recruits complement factor H (CFH) on CL-P1 expressing cell surfaces, to inhibit the formation of a terminal complement complex in normal complement serum conditions.General SignificanceThe interaction of collectin CL-P1 with CFH might be key for preventing attack on “self” as a result of complement activation induced by the CL-P1 and CRP interaction.  相似文献   

2.
C-reactive protein (CRP) is not an acute-phase protein in mice, and therefore, mice are widely used to investigate the functions of human CRP. It has been shown that CRP protects mice from pneumococcal infection, and an active complement system is required for full protection. In this study, we assessed the contribution of CRP's ability of activating the classical pathway of complement in the protection of mice from lethal infection with virulent Streptococcus pneumoniae type 3. We used two CRP mutants, Y175A and K114A. The Y175A CRP does not bind C1q and does not activate complement in human serum. The K114A CRP binds C1q and activates complement more efficiently than wild-type CRP. Passively administered, both CRP mutants and the wild-type CRP protected mice from infection equally. Infected mice injected with wild-type or mutant CRP had reduced bacteremia, resulting in lower mortality and increased longevity compared with mice that did not receive CRP. Thus, the protection of mice was independent of CRP-mediated activation of the classical pathway of complement. To confirm that human CRP does not differentiate between human and mouse complement, we analyzed the binding of human CRP to mouse C1q. Surprisingly, CRP did not react with mouse C1q, although both mutant and wild-type CRP activated mouse C3, indicating species specificity of CRP-C1q interaction. We conclude that the mouse is an unfit animal for exploring CRP-mediated activation of the classical complement pathway, and that the characteristic of CRP to activate the classical complement pathway has no role in protecting mice from infection.  相似文献   

3.
Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.  相似文献   

4.
C1q acts as the recognition unit of the first complement component, C1, and binds to immunoglobulins IgG and IgM, as well as to non-Ig ligands, such as C-reactive protein (CRP). IgG and IgM are recognized via the globular head regions of C1q (C1qGR), whereas CRP has been postulated to interact with the collagen-like region (C1qCLR). In the present study, we used a series of nine mAbs to C1q, five directed against C1qGR and four against C1qCLR, to inhibit the interaction of C1q with CRP. The F(ab')(2) of each of the five mAbs directed against C1qGR inhibited binding of C1q to polymerized IgG. These five mAbs also successfully inhibited the interaction of C1q with CRP. Moreover, these five mAbs inhibited C1 activation by CRP as well as by polymerized IgG in vitro. In contrast, none of the four mAbs against C1qCLR inhibited C1q interaction with CRP or IgG, or could reduce activation of complement by CRP or polymerized IgG. These results provide the first evidence that the interaction of C1q with CRP or IgG involves sites located in the C1qGR, whereas sites in the CLR do not seem to be involved in the physiological interaction of C1q with CRP.  相似文献   

5.
C-reactive protein (CRP) is the major acute phase protein in humans. It has been shown that CRP interacts with factor H, an inhibitor of the alternative pathway of complement, and now we demonstrate binding of CRP to the fluid-phase inhibitor of the classical pathway, C4b-binding protein (C4BP). C4BP bound to directly immobilized recombinant CRP as well as CRP attached to phosphorylcholine. The binding was sensitive to ionic strength and was enhanced in the presence of calcium. C4BP lacking beta-chain and protein S, which is a form of C4BP increasing upon inflammation, bound CRP with higher affinity than the C4BP-protein S complex. The binding could not be blocked with mAbs directed against peripheral parts of the alpha-chains of C4BP while the isolated central core of C4BP obtained by partial proteolytic digestion bound CRP, indicating that the binding site for CRP is localized in the central core of the C4BP molecule. Furthermore, we found complexes in serum from a patient with an elevated CRP level and trace amounts of CRP were also identified in a plasma-derived C4BP preparation. We were also able to detect C4BP-CRP complexes in solution and established that C4BP retains full complement regulatory activity in the presence of CRP. In addition, we found that C4BP can compete with C1q for binding to immobilized CRP and that it inhibits complement activation locally. We hypothesize that CRP limits excessive complement activation on targets via its interactions with both factor H and C4BP.  相似文献   

6.
C-reactive protein (CRP) and β-amyloid protein (Aβ) are involved in the development of Alzheimer's disease (AD). However, the relationship between CRP and Aβ production is unclear. In vitro and in vivo experiments were performed to investigate the association of CRP with Aβ production. Using the rat adrenal pheochromocytoma cell line (PC12 cells) to mimic neurons, cytotoxicity was evaluated by cell viability and supernatant lactate dehydrogenase (LDH) activity. The levels of amyloid precursor protein (APP), beta-site APP cleaving enzyme (BACE-1), and presenilins (PS-1 and PS-2) were investigated using real-time polymerase chain reaction and Western blotting analysis. Aβ1-42 was measured by enzyme-linked immunosorbent assay. The relevance of CRP and Aβ as well as potential mechanisms were studied using APP/PS1 transgenic (Tg) mice. Treatment with 0.5-4.0 μM CRP for 48 h decreased cell viability and increased LDH leakage in PC12 cells. Incubation with CRP at a sub-toxic concentration of 0.2 μM increased the mRNA levels of APP, BACE-1, PS-1, and PS-2, as well as Aβ1-42 production. CRP inhibitor reversed the CRP-induced upregulations of the mRNA levels of APP, BACE-1, PS-1, and PS-2, and the protein levels of APP, BACE-1, PS-1, and Aβ1-42, but did not reversed Aβ1-42 cytotoxicity. The cerebral levels of CRP and Aβ1-42 in APP/PS1 Tg mice were positively correlated, accompanied with the elevated mRNA expressions of serum amyloid P component (SAP), complement component 1q (C1q), and tumor necrosis factor-α (TNF-α). These results suggest that CRP cytotoxicity is associated with Aβ formation and Aβ-related markers expressions; CRP and Aβ were relevant in early-stage AD; CRP may be an important trigger in AD pathogenesis.  相似文献   

7.
Blood platelets and C-reactive protein (CRP) are both used clinically as markers of ongoing inflammation, and both participate actively in inflammatory responses, although the biological effects are still incompletely understood. Rapidly adhering platelets express receptors for complement factor 1q (C1q) and the Fc part of immunoglobulin G (IgG), and CRP is known to activate/regulate complement via C1q binding, and to ligate FcgammaRs. In the present study, we used normal human IgG pre-adsorbed to a well-characterized methylated surface as a model solid-phase immune complex when investigating the effects of CRP and C1q on platelet adhesion and activation. Protein adsorption was characterized using ellipsometry and polyclonal antibodies, and human serum albumin (HSA) and non-coated surfaces were used as reference surfaces. Platelet adhesion to IgG and HSA was inhibited by both C1q and CRP. Furthermore, CRP (moderately) and C1q (markedly) decreased the spreading of adhering platelets. The combination of C1q and CRP was slightly more potent in reducing cell adhesion to IgG, and also impaired the adhesion to HSA and non-coated surfaces. Platelet production of thromboxane B2 (TXB(2)) was also reduced by C1q both in the presence and absence of CRP, whereas CRP alone had no effect on TXB(2) production. We conclude that CRP and C1q regulate the behaviour of platelets, and that this may be an important immunoregulatory mechanism during inflammatory conditions.  相似文献   

8.
BackgroundPentraxins (PTXs) are a superfamily of multifunctional conserved proteins involved in acute-phase responses. Recently, we have shown that collectin placenta 1 (CL-P1) and C-reactive protein (CRP) mediated complement activation and failed to form terminal complement complex (TCC) in normal serum conditions because of complement factor H inhibition.MethodsWe used CL-P1 expressing CHO/ldlA7 cells to study the interaction with PTXs. Soluble type CL-P1 was used in an ELISA assay for the binding, C3 and TCC deposition experiments. Furthermore, we used our previously established CL-P1 expressing HEK293 cells for the C3 fragment and TCC deposition assay.ResultsWe demonstrated that CL-P1 also bound serum amyloid p component (SAP) and pentraxin 3 (PTX3) to activate the classical pathway and the alternative pathway using factor B. CRP and PTX3 further amplified complement deposition by properdin. We found that CRP and PTX3 recruit CFH, whereas SAP recruits C4 binding protein on CL-P1 expressing cell surfaces to prevent the formation of TCC in normal serum conditions. In addition, depletion of CFH, C4BP and complement factor I (CFI) failed to prevent TCC formation both in ELISA and cell experiments. Furthermore, soluble complement receptor 1, an inhibitor of all complement pathways prevents PTX induced TCC formation.ConclusionOur current study hypothesizes that the interaction of pentraxins with CL-P1 is involved in complement activation.General significanceCL-P1 might generally inhibit PTX induced complement activation and host damage to protect self-tissues.  相似文献   

9.
The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system.  相似文献   

10.
BACKGROUND: Human C-reactive protein (CRP) is the classical acute phase reactant, the circulating concentration of which rises rapidly and extensively in a cytokine-mediated response to tissue injury, infection and inflammation. Serum CRP values are routinely measured, empirically, to detect and monitor many human diseases. However, CRP is likely to have important host defence, scavenging and metabolic functions through its capacity for calcium-dependent binding to exogenous and autologous molecules containing phosphocholine (PC) and then activating the classical complement pathway. CRP may also have pathogenic effects and the recent discovery of a prognostic association between increased CRP production and coronary atherothrombotic events is of particular interest. RESUTLS: The X-ray structures of fully calcified C-reactive protein, in the presence and absence of bound PC, reveal that although the subunit beta-sheet jellyroll fold is very similar to that of the homologous pentameric protein serum amyloid P component, each subunit is tipped towards the fivefold axis. PC is bound in a shallow surface pocket on each subunit, interacting with the two protein-bound calcium ions via the phosphate group and with Glu81 via the choline moiety. There is also an unexpected hydrophobic pocket adjacent to the ligand. CONCLUSIONS: The structure shows how large ligands containing PC may be bound by CRP via a phosphate oxygen that projects away from the surface of the protein. Multipoint attachment of one planar face of the CRP molecule to a PC-bearing surface would leave available, on the opposite exposed face, the recognition sites for C1q, which have been identified by mutagenesis. This would enable CRP to target physiologically and/or pathologically significant complement activation. The hydrophobic pocket adjacent to bound PC invites the design of inhibitors of CRP binding that may have therapeutic relevance to the possible role of CRP in atherothrombotic events.  相似文献   

11.
Ligand-complexed C-reactive protein (CRP), like aggregated or complexed IgG, can react with C1q and activate the classical C pathway. Whereas IgG is known to bind to the globular region and not to the collagen-like region (CLR) of C1q, the site of interaction of C1q with CRP has not been defined. CRP-trimers were prepared by cross-linking and found to bind to C1q and to activate the C system. Heat-aggregated IgG (Agg-IgG) did not block the binding of CRP-trimers to C1q, nor did CRP-trimers block binding of Agg-IgG to C1q, suggesting that CRP and IgG bind at different sites. ELISA and Western blot analysis showed that CRP-trimers bound to the CLR, whereas Agg-IgG bound only to the globular region; similarly, anti-CLR mAb inhibited binding of CRP-trimers to C1q whereas anti-globular region mAb did not. Reactivity with CRP-trimers as well as with Agg-IgG was retained after reduction/alkylation and SDS treatment of C1q. A group of 22 anti-CRP mAb directed against at least six distinct native-CRP epitopes and eight distinct neo-CRP epitopes was tested for ability to inhibit the CRP-CLR interaction; one mAb, anti-native CRP mAb 8D8, with strong inhibitory activity was identified. Fab' of 8D8 blocked binding of CRP-trimers to intact C1q as well as CLR, and also inhibited CRP (CRP-trimers and CRP-protamine complexes) induced C activation, but had no effect on C1q binding or C activation by Agg-IgG. These results indicate that a conformation-determined region on CRP binds to a sequence-determined region on the CLR of C1q in an interaction which leads to C activation. Anti-CRP and anti-C1q mAb that specifically inhibit this interaction are described.  相似文献   

12.
The acute-phase response (APR) is regulated by TNF-alpha, IL-1beta, and IL-6 acting alone, in combination, or in concert with hormones. The anaphylotoxin C5a, generated during complement activation, induces in vitro the synthesis of these cytokines by leukocytes and of acute-phase proteins by HepG2 cells. However, there is no clear evidence for a role of C5a or any other complement activation product in regulation of the APR in vivo. In this study, using human C-reactive protein (CRP) transgenic mice deficient in C3 or C5, we investigated whether complement activation contributes to induction of the acute-phase proteins CRP and serum amyloid P-component (SAP). Absence of C3 or C5 resulted in decreased LPS-induced up-regulation of the CRP transgene and the mouse SAP gene. Also, LPS induced both the IL-1beta and IL-6 genes in normocomplementemic mice, but in complement-deficient mice it significantly induced only IL-6. Like LPS injection, activation of complement by cobra venom factor led to significant elevation of serum CRP and SAP in normocomplementemic mice but not in complement-deficient mice. Injection of recombinant human C5a into human CRP transgenic mice induced the IL-1beta gene and caused significant elevation of both serum CRP and SAP. However, in human CRP transgenic IL-6-deficient mice, recombinant human C5a did not induce the CRP nor the SAP gene. Based on these data, we conclude that during the APR, C5a generated as a consequence of complement activation acts in concert with IL-6 and/or IL-1beta to promote up-regulation of the CRP and SAP genes.  相似文献   

13.
Mice defective for C1q complement factor show enhanced resistance to peripheral prion inoculation, and previous work demonstrated a direct interaction between C1q and conformationally modified PrP. However, the nature and physiological consequences of this interaction remain uncharacterized. PrP amino acids 141-159 has been identified as a potential C1q binding site; we show, by both surface plasmon resonance (SPR) spectroscopy and ELISA, that C1q and its globular region bind to PrP mutagenized in the region of interest with comparable efficiency to that of wild-type protein. To test PrP's ability to activate complement, soluble oligomers of the PrP constructs were made. Only PrP and mutagenized PrP oligomers activate the classical complement cascade while PrP monomer and the C-terminal domain, both in oligomeric and in monomeric form, failed to induce activation. This suggests that a conformational change in PrP, which occurs both when PrP is bound to an SPR sensor chip and when it undergoes oligomerization, is requisite for PrP/C1q interaction and activation of the complement cascade. We propose that C1q may act as a natural sensor for prions, leading to activation of the classical complement cascade, which could result in local inflammation and subsequent recruitment of the immune cells that prions initially infect.  相似文献   

14.
C1q is the recognition subunit of the first component of the classical complement pathway. It participates in clearance of immune complexes and apoptotic cells as well as in defense against pathogens. Inappropriate activation of the complement contributes to cellular and tissue damage in different pathologies, urging the need for the development of therapeutic agents that are able to inhibit the complement system. In this study, we report heme as an inhibitor of C1q. Exposure of C1q to heme significantly reduced the activation of the classical complement pathway, mediated by C-reactive protein (CRP) and IgG. Interaction analyses revealed that heme reduces the binding of C1q to CRP and IgG. Furthermore, we demonstrated that the inhibition of C1q interactions results from a direct binding of heme to C1q. Formation of complex of heme with C1q caused changes in the mechanism of recognition of IgG and CRP. Taken together, our data suggest that heme is a natural negative regulator of the classical complement pathway at the level of C1q. Heme may play a role at sites of excessive tissue damage and hemolysis where large amounts of free heme are released.  相似文献   

15.
Classical complement pathway is an important innate immune mechanism, which is usually triggered by binding of C1q to immunoglobulins, pentraxins and other target molecules. Although the activation of the classical pathway is crucial in the host defence, its undesirable and uncontrolled activation can lead to tissue damage. Thus, understanding the molecular basis of complement activation and its inhibition are of great biomedical importance. Recently, we proposed a mechanism for target recognition and classical pathway activation by C1q, which is likely governed by calcium-controlled reorientation of macromolecular electric moment vectors. Here we sought to define the mechanism of C1q inhibition by low molecular weight disulphate compounds that bind to the globular (gC1q) domain, using experimental, computational docking and theoretical modelling approaches. Our experimental results demonstrate that betulin disulphate (B2S) and 9,9-bis(4'-hydroxyphenyl)fluorene disulphate (F2S) inhibit the interaction of C1q and its recombinant globular modules with target molecules IgG1, C-reactive protein (CRP) and long pentraxin 3 (PTX3). In most C1q-inhibitor docked complexes, there is a reduction of electric moment scalar values and similarly altered direction of electric/dipole moment vectors. This could explain the inhibitory effect by impaired electrostatic steering, lacking optimal target recognition and formation of functional complex. In the presence of the inhibitor, the tilt of gC1q domains is likely to be blocked by the altered direction of the electric moment vector. Thus, the transition from the inactive (closed) towards the active (open) conformation of C1q (i.e. the complement activation signal transmission) will be impaired and the cascade initiation disrupted. These results could serve as a starting point for the exploration of a new form of 'electric moment inhibitors/effectors'.  相似文献   

16.
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads.  相似文献   

17.
We investigated the role of complement component C1q in the IgG-independent opsonophagocytosis of type III group B Streptococcus (GBS) by peripheral blood leukocytes. We report that C1q binds to type III GBS both in normal human serum deficient in IgG specific for type III capsular polysaccharide and in a low-ionic strength buffer. The dissociation constant Kd ranged from 2.0 to 5.5 nM, and the number of binding sites Bmax ranged from 630 to 1360 molecules of C1q per bacterium (CFU). An acapsular mutant strain of GBS bound C1q even better than the wild type, indicating that the polysaccharide capsule is not the receptor for C1q. In serum, binding of C1q to GBS was associated with activation of the classical complement pathway. However, normal human serum retained significant opsonic activity after complete depletion of C1q, suggesting that the serum contains a molecule that is able to replace C1q in opsonization and/or complement activation. Mannan-binding lectin, known to share some functions with C1q, appeared not to be involved, since its depletion from serum had little effect on opsonic activity. Excess soluble C1q or its collagen-like fragment inhibited phagocytosis mediated by normal human serum, suggesting that C1q may compete with other opsonins for binding to receptor(s) on phagocytes. We conclude that, although C1q binds directly to GBS, C1q binding is neither necessary nor sufficient for IgG-independent opsonophagocytosis. The results raise the possibility that additional unknown serum factor(s) may contribute to opsonization of GBS directly or via a novel mechanism of complement activation.  相似文献   

18.
C-reactive protein (CRP) is an acute-phase reactant that is found bound to cells at sites of inflammation. We have passively sensitized HEp-2 cells for CRP binding and examined the effect of this treatment on complement activation and cell lysis. When cells were treated with protamine sulfate and CRP and were incubated with normal human serum in a 4-hr 51Cr-release assay, no significant lysis was noted. In contrast, HEp-2 cells treated with antibody and normal human serum were lysed. The consumption of complement components in normal human serum after incubation with cells treated with protamine and CRP was measured by hemolytic assays. CRP-treated cells consumed over 80% of C1, C4, and C2 and about 40% of C3 present. No significant consumption of C5 through C9 components was observed. Cells treated with antibody and complement showed consumption of C1 through C9. Cells were also sensitized for CRP binding by using diazophenylphosphocholine. This treatment also led to CRP binding and activation of the early classical pathway (C1, C4, C2, and to a lesser extent C3). The components of the membrane attack complex (C5 through C9) were not activated. Both a mouse monoclonal IgM and a human IgG antibody to phosphocholine activated the entire classical pathway. These results indicate that CRP activation of the classical complement pathway is restricted to the early part of the pathway. In the absence of activation of the membrane attack complex, complement-mediated cell lysis cannot occur.  相似文献   

19.
Tamm-Horsfall protein (THP) binds strongly to complement 1q (C1q), a key component of the classical complement pathway. The goals of this study were to determine whether THP altered the activation of the classical complement pathway and whether the carbohydrate portion of THP was involved in this glycoprotein's binding to C1q and alteration of complement activation. The ability of THP to prevent complement activation in diluted serum or plasma incubated at 37 degrees C was assessed using both a haemolytic assay with antibody-sensitized sheep RBC and a C4d ELISA. Both these methods showed that THP inhibited activation of the classical complement pathway in a dose-dependent manner. Glycosidases were used to remove most of the carbohydrate from THP. This partially deglycosylated THP bound human IgG with a higher affinity (KD1 = 1.4 nmol/L; KD2 = 0.31 micromol/L) than did intact THP (KD1 = 33.4 nmol/L; KD2 = 31.0 micromol/L). An ELISA showed that removal of carbohydrate from THP reduced, but did not eliminate, the ability of this protein to inhibit binding of C1q to intact THP. Haemolysis assays using antibody-sensitized sheep RBC showed that removal of THP carbohydrate eliminated the ability of THP to protect against complement activation. In conclusion, THP inhibited the activation of the classical complement pathway that occurred in diluted serum or plasma. The carbohydrate moieties of THP appeared to be important in this inhibitory activity.  相似文献   

20.
C-reactive protein (CRP) is a major acute phase protein whose functions are not totally clear. In this study, we examined the interaction of CRP with factor H (FH), a key regulator of the alternative pathway (AP) of complement. Using the surface plasmon resonance technique and a panel of recombinantly expressed FH constructs, we observed that CRP binds to two closely located regions on short consensus repeat (SCR) domains 7 and 8-11 of FH. Also FH-like protein 1 (FHL-1), an alternatively spliced product of the FH gene, bound to CRP with its most C-terminal domain (SCR 7). The binding reactions were calcium-dependent and partially inhibited by heparin. In accordance with the finding that CRP binding sites on FH were distinct from the C3b binding sites, CRP preserved the ability of FH to promote factor I-mediated cleavage of C3b. We propose that the function of CRP is to target functionally active FH and FHL-1 to injured self tissues. Thereby, CRP could restrict excessive complement attack in tissues while allowing a temporarily enhanced AP activity against invading microbes in blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号