首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

2.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

3.
C A Fields  D L Grady  R K Moyzis 《Genomics》1992,13(2):431-436
Fifteen examples of the transposon-like human element (THE) LTR and thirteen examples of the MstII interspersed repeat are aligned to generate new consensus sequences for these human repetitive elements. The consensus sequences of these elements are very similar, indicating that they compose subfamilies of a single human interspersed repetitive sequence family. Members of this highly polymorphic repeat family have been mapped to at least 11 chromosomes. Seven examples of the THE internal sequence are also aligned to generate a new consensus sequence for this element. Estimates of the abundance of this repetitive sequence family, derived from both hybridization analysis and frequency of occurrence in GenBank, indicate that THE-LTR/MstII sequences are present every 100-3000 kb in human DNA. The widespread occurrence of members of this family makes them useful landmarks, like Alu, L1, and (GT)n repeats, for physical and genetic mapping of human DNA.  相似文献   

4.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

5.
Application of genetic linkage maps in plant genetics and breeding can be greatly facilitated by integrating the available classical and molecular genetic linkage maps. In rice, Oryza sativa L., the classical linkage map includes about 300 genes which correspond to various important morphological, physiological, biochemical and agronomic characteristics. The molecular maps consist of more than 500 DNA markers which cover most of the genome within relatively short intervals. Little effort has been made to integrate these two genetic maps. In this paper we report preliminary results of an ongoing research project aimed at the complete integration and alignment of the two linkage maps of rice. Six different F2 populations segregating for various phenotypic and RFLP markers were used and a total of 12 morphological and physiological markers (Table 1) were mapped onto our recently constructed molecular map. Six linkage groups (i.e., chr. 1, 3, 7, 9, 11 and 12) on our RFLP map were aligned with the corresponding linkage groups on the classical map, and the previous alignment for chromosome 6 was further confirmed by RFLP mapping of an additional physiological marker on this chromosome. Results from this study, combined with our previous results, indicate that, for most chromosomes in rice, the RFLP map encompasses the classical map. The usefulness of an integrated genetic linkage map for rice genetics and breeding is discussed.Abbreviations RFLP restriction fragment length polymorphism - chr chromosome - cM centiMorgan  相似文献   

6.
M W Ganal  P Broun  S D Tanksley 《Genomics》1992,14(2):444-448
A telomere-associated tandemly repeated DNA sequence of tomato, TGR I, has been used to map telomeres on the tomato RFLP linkage map. Mapping was performed by monitoring the segregation of entire arrays of TGR I from a segregating F2 population using pulsed-field gel electrophoresis (PFGE). With this strategy, four telomeres have been mapped to the ends of the short arm of chromosomes 9 and 12 and the long arms of chromosomes 5 and 11, using a saturated RFLP map of tomato containing approximately 1000 RFLP markers. In all four cases, the TGR I locus maps to the end of the chromosome, and the distance between the most distal single-copy RFLP marker and the telomeric TGR I locus was between 1.6 and 9.6 cM. This indicates that the region close to the telomeres does not show an excessive rate of recombination compared to other regions of the genome and that the RFLP map of tomato is essentially complete and covers the entire genome for all practical purposes. Additionally, the mapping technique presented here should be generally applicable to the mapping of other tandemly repeated DNA sequences.  相似文献   

7.
Microsatellite markers containing simple sequence repeats (SSR) are a valuable tool for genetic analysis. Our objective is to augment the existing RFLP map of rice with simple sequence length polymorphisms (SSLP). In this study, we describe 20 new microsatellite markers that have been assigned to positions along the rice chromosomes, characterized for their allelic diversity in cultivated and wild rice, and tested for amplification in distantly related species. Our results indicate that the genomic distribution of microsatellites in rice appears to be random, with no obvious bias for, or clustering in particular regions, that mapping results are identical in intersubspecific and interspecific populations, and that amplification in wild relatives ofOryza sativa is reliable in species most closely related to cultivated rice but becomes less successful as the genetic distance increases. Sequence analysis of SSLP alleles in three relatedindica varieties demonstrated the clustering of complex arrays of SSR motifs in a single 300-bp region with independent variation in each. Two microsatellite markers amplified multiple loci that were mapped onto independent rice chromosomes, suggesting the presence of duplicated regions within the rice genome. The availability of increasing numbers of mapped SSLP markers can be expected to increase the power and resolution of genome analysis in rice.  相似文献   

8.
In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2–4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected.  相似文献   

9.
This paper describes a fluorescence in situ hybridization (FISH) analysis of three different repetitive sequence families, which were mapped to mitotic metaphase chromosomes and extended DNA fibers (EDFs) of the two subspecies of rice (Oryza sativa), indica and japonica (2n=2x=24). The repeat families studied were (1) the tandem repeat sequence A (TrsA), a functionally non-significant repeat; (2) the [TTTAGGG]n telomere sequence, a non-transcribed, tandemly repeated but functionally significant repeat; and (3) the 5S ribosomal RNA (5S rDNA). FISH of the TrsA repeat to metaphase chromosomes of indica and japonica cultivars revealed clear signals at the distal ends of twelve and four chromosomes, respectively. As shown in a previous report, the 17S ribosomal RNA genes (17S rDNA) are located at the nucleolus organizers (NORs) on chromosomes 9 and 10 of the indica cultivar. However, the japonica rice lacked the rDNA signals on chromosome 10. The size of the 5S rDNA repeat block, which was mapped on the chromosome 11 of both cultivars, was 1.22 times larger in the indica than in the japonica genome. The telomeric repeat arrays at the distal ends of all chromosome arms were on average three times longer in the indica genome than in the japonica genome. Flow cytometric measurements revealed that the nuclear DNA content of indica rice is 9.7% higher than that of japonica rice. Our data suggest that different repetitive sequence families contribute significantly to the variation in genome size between indica and japonica rice, though to different extents. The increase or decrease in the copy number of several repetitive sequences examined here may indicate the existence of a directed change in genome size in rice. Possible reasons for this phenomenon of concurrent evolution of various repeat families are discussed. Received: 9 August 1999 / Accepted: 29 December 1999  相似文献   

10.
A highly repetitive long interspersed sequence from rat DNA has been isolated and partly characterized. This sequence comprises at least a 1300 base-pair and a 2400 base-pair EcoRI fragment and probably additional elements. The 2400 base-pair segment has been analyzed in detail. It appears to be part of the chromosomal DNA in rat cells. The 2400 base-pair repeat is likely to be distributed over several regions in the rat genome. The 2400 base-pair segment has been cloned, mapped for restriction sites, and part of its nucleotide sequence has been determined. The 2400 base-pair sequence is a member of a typical highly repetitive long interspersed sequence with high copy number and restriction site polymorphism. There are sequence homologies to mouse and human DNA. A striking homology has been detected to the flanking sequences of a repetitive mouse DNA sequence that has been described to be located adjacent to one of the kappa-immunoglobulin variable genes. Elements in the 2400 base-pair rat repeat are transcribed in cells from most rat organs and from several continuous rat cell lines. This RNA from rat cell lines was found polyadenylated or not polyadenylated. The nucleotide sequence of parts of the 2400 base-pair DNA segment revealed open reading frames for polypeptide sequences. Such open reading frames have been detected in two different segments of the 2400 base-pair DNA repeat. Open reading frames exist in the two complementary strands in the same DNA segment. The hypothetical polypeptide whose sequence has been determined in toto has a length of 190 amino acid residues and is enriched in hydrophobic amino acids, reminiscent of the amino acid composition in membrane proteins. Hence, it is conceivable that the 2400 base-pair repeat sequence from rat DNA, at least in part, encodes messenger RNAs that might be translated into functional proteins.  相似文献   

11.
A family of DNA loci (DNF28) from the pseudoautosomal region of the human sex chromosomes is characterized by a repeated element (STIR: subtelomeric interspersed repeat) which detects homologous sequences in the telomeric regions of human autosomes by in situ hybridization. Several STIR elements from both the pseudoautosomal region and terminal parts of autosomes were cloned and sequenced. A conserved 350 bp sequence and some characteristic structural differences between the autosomal and pseudoautosomal STIRs were observed. Screening of the DNA sequence databases with a consensus sequence revealed the presence of STIRs in several human loci localized in the terminal parts of different chromosomes. We mapped single copy probes flanking the cloned autosomal STIRs to the subtelomeric parts of six different chromosomes by in situ hybridization and genetic linkage analysis. The linkage data show a greatly increased recombination frequency in the subtelomeric regions of the chromosomes, especially in male meiosis. The STIR elements, specifically located in subtelomeric regions, could play a role in the peculiar recombination properties of these chromosomal regions, e.g. by promoting initiation of pairing at meiosis.  相似文献   

12.
Pulsed-field gel electrophoresis (PFGE) has been applied to analyze the rice nuclear genome. Probing 56 RFLP probes selected from the 12 rice chromosomes to PFGE blots of nine rare-cutting restriction enzymes revealed that there are relatively high numbers of rare-cutting restriction sites in the rice genome. The average sizes of restriction fragments detected by single-copy probes are smaller than 200 kb for all of the rare-cutting restriction enzymes examined. Sizes of fragments detected by repetitive probes are variable, depending on the probes analyzed. By using PFGE, a tandemly repeated sequence, Os48, was found to be tightly linked to telomeric tandem repeats but not physically linked to r5s genes with which sequence homology had been observed. Relationships between genetic and physical distances have been established for three different chromosomal segments. In these regions 1 cm corresponds to ca. 260 kb on average. Analysis of a cluster of RFLP markers on chromosome 3 revealed that genetically clustered RFLP markers are also physically closely linked, suggesting that clustering of genetic markers may result in part from uneven distribution of single-copy sequences.  相似文献   

13.
We describe a highly repeated DNA element in the Xenopus laevis genome. This sequence, named the 1723 element, was first identified among sequences that are transcribed during embryonic development. The element is present in about 8500 copies per haploid genome, which together accounts for about 2.4% of the genome. Most copies of the element have highly conserved restriction maps, and are interspersed in the genome. The copies range in size from 6000 to 10,000 base-pairs due to an expandable region that contains variable numbers of a tandemly repeating 183 to 204 base-pair unit. The element is framed by an imperfect 18 base-pair inverted sequence, and inverted repeats of 180 to 185 base-pairs are nearby. Sequence analysis of DNA adjacent to three cloned elements shows that the elements are flanked by 8 base-pair direct repeats. These and other properties of 1723 suggest that it may be transposable.  相似文献   

14.
A systematic screening and analysis of repeated DNA sequences from a dog genomic library composed of small DNA inserts enabled us to characterize abundant canine repetitive DNA families. Four main families were identified: i) a group of highly repeated tRNA-derived short interspersed repetitive DNA elements (tRNA-SINEs); ii) another type of SINE-like element that was mainly found inserted into long interspersed repetitive elements (LINEs); iii) LINEs of the L1 type; and iv) satellite or satellite-like DNA. Surprisingly, no SINEs derived from 7SL RNA were found in the dog genome. These data should help in the analysis of canine DNA sequences and in the design of canine genome mapping reagents. Received: 4 November 1998 / Accepted: 2 February 1999  相似文献   

15.
Combined mapping of AFLP and RFLP markers in barley   总被引:56,自引:0,他引:56  
AFLP marker technology allows efficient DNA fingerprinting and the analysis of large numbers of polymorphic restriction fragments on polyacrylamide gels. Using the doubled haploids from the F1 of the cross Proctor × Nudinka, 118 AFLP markers were mapped onto a barley (Hordeum vulgare L.) RFLP map, also including five microsatellite and four protein marker loci. The AFLP markers mapped to all parts of the barley chromosomes and filled in the gaps on barley chromosomes 2L, 4L and 6 in which no RFLP loci had been mapped. Interestingly, the AFLP markers seldom interrupted RFLP clusters, but grouped next to them. The combined map covers 1873 cM, with a total of 282 markers. The merging of AFLP and RFLP markers increased the total map length; 402 cM were added to the map at the tips of chromosomes or in regions corresponding to earlier gaps. Another 375 cM resulted from mapping AFLP markers near to RFLP clusters or in between non-clustered RFLP markers.  相似文献   

16.
A tomato lambda genomic library was screened with the human minisatellites 33.6 and 33.15. Similar tomato sequences are estimated to occur on average every 4000 kb. In thirteen hybridizing clones characterized, the size of minisatellite arrays varied between 100 bp and 3 kb. The structure of the repetitive elements is complex as the human core sequence is interspersed with other elements. In three cases, sequences similar to the human minisatellites were part of a higher-order tandem repeat. The chromosomal position of these sequences was established by ascertaining linkage to previously mapped RFLP markers. In contrast to the human genome, no clustering of minisatellite loci was observed in tomato. The fingerprints generated by hybridizing tomato minisatellites to genomic DNA of a set of cultivars were, in two cases, more variable than those obtained with 33.6 or 33.15. Two of the characterized probes detected 4–8 alleles of a single locus, which displayed 10–15 times more polymorphism than random RFLP clones. Some minisatellites contain di- and tri-nucleotide microsatellite repeated motifs which may account for the high level of polymorphism detected with these clones.  相似文献   

17.
The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to related large-genome species has revolutionized molecular genetics and breeding strategies for improving those crops. Comparative sequence analysis methods can be used to cross-reference genes between species maps, enhance the resolution of comparative maps, study patterns of gene evolution, identify conserved regions of the genomes, and facilitate interspecies gene cloning. In this study, 5,780 Triticeae ESTs that have been physically mapped using wheat (Triticum aestivum L.) deletion lines and segregating populations were compared using NCBI BLASTN to the first draft of the public rice (Oryza sativa L.) genome sequence data from 3,280 ordered BAC/PAC clones. A rice genome view of the homoeologous wheat genome locations based on sequence analysis shows general similarity to the previously published comparative maps based on Southern analysis of RFLP. For most rice chromosomes there is a preponderance of wheat genes from one or two wheat chromosomes. The physical locations of non-conserved regions were not consistent across rice chromosomes. Some wheat ESTs with multiple wheat genome locations are associated with the non-conserved regions of similarity between rice and wheat. The inverse view, showing the relationship between the wheat deletion map and rice genomic sequence, revealed the breakdown of gene content and order at the resolution conferred by the physical chromosome deletions in the wheat genome. An average of 35% of the putative single copy genes that were mapped to the most conserved bins matched rice chromosomes other than the one that was most similar. This suggests that there has been an abundance of rearrangements, insertions, deletions, and duplications eroding the wheat-rice genome relationship that may complicate the use of rice as a model for cross-species transfer of information in non-conserved regions.  相似文献   

18.
Yeast artificial chromosome (YAC) clones were arranged on thepositions of restriction fragment length polymorphism (RFLP)and sequence-tagged site (STS) markers already mapped on thehigh-resolution genetic maps of rice chromosomes 3 and 11. Froma total of 416 and 242 YAC clones selected by colony/Southernhybridization and polymerase chain reaction (PCR) analysis,238 and 135 YAC clones were located on chromosomes 3 and 11,respectively. For chromosomes 3 and 11, 24 YAC contigs and islandswith total coverage of about 46% and 12 contigs and islandswith coverage of about 40%, respectively, were assigned. Althoughmany DNA fragments of multiple copy marker sequences could notbe mapped to their original locations on the genetic map bySouthern hybridization because of a lack of RFLP, the physicalmapping of YAC clones could often assign specific locationsof such multiple copy sequences on the genome. The informationprovided here on contig formation and similar sequence distributionrevealed by ordering YAC clones will help to unravel the genomeorganization of rice as well as being useful in isolation ofgenes by map-based cloning.  相似文献   

19.
一个水稻重复序列的分析与定位   总被引:3,自引:0,他引:3  
在利用PCR简并引物扩增水稻NBS-LRR类抗病基因同源序列的研究中,克隆了一个大小为560 bp左右的重复序列,命名为DH17。序列分析和同源性比较发现,该序列包含352 bp的重复单位,与已报道的OS48和TrsA等重复单位序列进行比较,差异多低于5%, 具有很高的同源性,因此为同一重复序列家族。分子杂交表明,该序列在籼型品种"窄叶青8号"(ZYQ8)中以大量的串联拷贝存在,拷贝数显著高于粳型品种"京系17"(JX17)。利用ZYQ8和JX17组配的DH群体,通过 RFLP分析,直接将DH17的大量串联拷贝定位于ZYQ8的12号染色体长臂末端区域。 Abstract:A repeated sequence with a length of 560 bp,termed as DH17,was obtained during PCR amplification of rice NBS-LRR homologues.A repeated unit of 352 bp in the DH17 fragment was revealed through sequence analysis and comparison,which has a high homology with the known sequences of OS48 and TrsA,and belongs to the same repeat family.Southern hybridization displayed that there are higher DH17 copies in the genome of an indica variety,ZYQ8,than that in the genome of japonica variety,JX17.The tandom repeated DH17 sequence was mapped on the long arm end of chromosome 12 through RFLP analysis of a double haploid population derived from ZYQ8 and JX17 using DH17 as a probe.  相似文献   

20.
DNA gel-blot and in situ hybridization with genome-specific repeated sequences have proven to be valuable tools in analyzing genome structure and relationships in species with complex allopolyploid genomes such as hexaploid oat (Avena sativa L., 2n = 6x = 42; AACCDD genome). In this report, we describe a systematic approach for isolating genome-, chromosome-, and region-specific repeated and low-copy DNA sequences from oat that can presumably be applied to any complex genome species. Genome-specific DNA sequences were first identified in a random set of A. sativa genomic DNA cosmid clones by gel-blot hybridization using labeled genomic DNA from different Avena species. Because no repetitive sequences were identified that could distinguish between the A and D gneomes, sequences specific to these two genomes are refereed to as A/D genome specific. A/D or C genome specific DNA subfragments were used as screening probes to identify additional genome-specific cosmid clones in the A. sativa genomic library. We identified clustered and dispersed repetitive DNA elements for the A/D and C genomes that could be used as cytogenetic markers for discrimination of the various oat chromosomes. Some analyzed cosmids appeared to be composed entirely of genome-specific elements, whereas others represented regions with genome- and non-specific repeated sequences with interspersed low-copy DNA sequences. Thus, genome-specific hybridization analysis of restriction digests of random and selected A. sativa cosmids also provides insight into the sequence organization of the oat genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号