首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White fluorescent light (5 W m−2) inhibited Avena coleoptile growth. Light caused in increase in minimum stress relaxation time and a decrease in extensibility (strain/load) of coleoptile cell walls. Light increased the contents of ferulic acid (FA) and diferulic acid (DFA) ester-linked to the hemicellulose I in cell walls. These changes in the phenolic contents correlated with those of the mechanical properties of cell walls, suggesting that light stimulates the formation of DFA in hemicellulose I, making cell walls rigid, and thus results in growth inhibition. The ratio of DFA to FA was almost constant in the dark, but decreased in light, although it was almost constant in Oryza coleoptiles either in the dark or in light (Tan et al. 1992). From this fact, it is speculated that in the light condition, the formation of DFA in cell walls is limited in the step of the peroxidase catalyzed coupling reaction to produce DFA, while in the dark it is limited in the step of the feruloylation of hemicellulose I.  相似文献   

2.
The relationship between the formation of cell wall-bound ferulic acid (FA) and diferulic acid (DFA) and the change in activities of phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) was studied in rice shoots. The length and the fresh mass of shoots increased during the growth period from day 4 to 6, while coleoptiles ceased elongation growth on day 5. The amounts of FA and DFA isomers as well as cell wall polysaccharides continued to increase during the whole period. The activities of PAL and CW-PRX greatly increased in the same manner during the period. There were close correlations between the PAL activity and ferulate content or between the CW-PRX activity and DFA content. The expression levels of investigated genes for PAL and putative CW-PRX showed good accordance with the activities of these enzymes. These results suggest that increases in PAL and CW-PRX activities are cooperatively involved in the formation of ferulate network in cell walls of rice shoots and that investigated genes may be, at least in part, associated with the enzyme activities. The substantial increase in such network probably causes the maturation of cell walls and thus the cessation of elongation growth of coleoptiles.  相似文献   

3.
Application of abscisic acid (ABA) to dark-grown wheat (Triticumaestivum L.) roots interfered the cell wall hardening of coleoptilesduring several days of the treatment. Although the amounts ofwall-bound diferulic (DFA) and ferulic (FA) acids in coleoptilesincreased as the coleoptiles grew, ABA substantially reducedtheir increases. When ABA was removed, however, these contentsincreased and reached levels near those of control coleoptiles.A close correlation was observed between the levels of DFA andFA and the mechanical properties of cell walls. The ratio ofthe amount of DFA to FA was almost constant irrespective ofgrowth conditions. The activities of phenylalanine- (PAL) andtyrosine-ammonia-Iyase (TAL) increased rapidly in the controlcoleoptiles. ABA greatly reduced the increases in these enzymeactivities. In response to ABA removal, the enzyme activitiesincreased rapidly. There was a close correlation between theincrease in FA level and the changes in enzyme activities. Theseresults suggest that ABA suppresses the increases in PAL andTAL activities in wheat coleoptiles, resulting in the reducedlevel of wall-bound FA, which, in turn, may cause the reducedDFA level and thereby maintain cell wall extensibility. (Received January 10, 1997; Accepted April 22, 1997)  相似文献   

4.
Effects of silicon on the mechanical and chemical properties of cell walls in the second leaf of oat (Avena sativa L.) seedlings were investigated. The cell wall extensibility in the basal region of the second leaf was considerably higher than that in the middle and subapical regions. Externally applied silicon increased the cell wall extensibility in the basal region, but it did not affect the extensibility in the middle and subapical regions. The amounts of cell wall polysaccharides and phenolic compounds, such as diferulic acid (DFA) and ferulic acid (FA), per unit length were lower in the basal region than in the middle and subapical regions of the leaf, and silicon altered these amounts in the basal region. In this region, silicon decreased the amounts of matrix polymers and cellulose per unit length and of DFA and FA, both per unit length and unit matrix polymer content. Silicon treatment also lowered the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) in the basal region. In contrast, the amount of silicon in cell walls increased in response to silicon treatment in three regions. These results suggest that in the basal region, silicon reduces the net wall mass and the formation of phenolic acid-mediated cross-linkages between wall polysaccharides. Such modifications of wall architecture may be responsible for the silicon-induced increase in the cell wall extensibility in oat leaves.  相似文献   

5.
Effects of polyethylene glycol (PEG)-induced osmotic stress on the mechanical properties of cell walls and the levels of their components were investigated along intact wheat (Triticum aestivum L.) coleoptiles. Stress-relaxation analysis showed that the cell walls of stressed coleoptiles were loosened as compared with those of unstressed ones not only in the apical but in the basal regions. The amounts of wall-bound ferulic acid (FA) and diferulic acid (DFA) of stressed coleoptiles were substantially lower than those of unstressed ones in all regions. The cellulose and hemicellulose contents increased toward the coleoptile base. Osmotic stress reduced the cellulose content in the basal region but it slightly affected the hemicellulose content. The molecular weight of hemicellulose in the apical region of stressed coleoptiles was higher than that of unstressed ones, while that in the basal region was almost the same in both coleoptiles. FA, DFA and cellulose contents correlated with the cell wall mechanical property. The amount and molecular weight of hemicellulose, however, did not correlate. These results suggest that the reduced levels of FA and DFA in all regions and cellulose in the basal region of wheat coleoptiles are involved in maintaining the cell wall extensibility under osmotic stress.  相似文献   

6.
The relationship between the mechanical properties of cell walls and the levels of wall-bound ferulic (FA) and diferulic (DFA) acids was investigated in wheat (Triticum aestivum L.) coleoptiles grown under osmotic stress (60 mM polyethylene glycol [PEG] 4000) conditions. The cell walls of stressed coleoptiles remained extensible compared with those of the unstressed ones. The contents of wall-bound FA and DFA increased under unstressed conditions, but the increase was substantially reduced by osmotic stress. In response to PEG removal, these contents increased and reached almost the same levels as those of the unstressed coleoptiles. A close correlation was observed between the contents of FA and DFA and the mechanical properties of cell walls. The activities of phenylalanine ammonia-lyase and tyrosine ammonia-lyase increased rapidly under unstressed conditions. Osmotic stress substantially reduced the increases in enzyme activities. When PEG was removed, however, the enzyme activities increased rapidly. There was a close correlation between the FA levels and enzyme activities. These results suggest that in osmotically stressed wheat coleoptiles, reduced rates of increase in phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities suppress phenylpropanoid biosynthesis, resulting in the reduced level of wall-bound FA that, in turn, probably causes the reduced level of DFA and thereby maintains cell wall extensibility.  相似文献   

7.
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and tyrosine ammonia-lyase (TAL, 4.3.1.), the key enzymes of the phenylpropanoid pathway, are inducible in response to biotic (such as chitin from fungal cell walls) and abiotic cues. Application of chitin and chitosan to soybean leaf tissues caused increased activity of PAL and TAL enzymes. The elevation of enzyme activity was dependent on the chain length of the oligomers and time after treatment. The hexamer of chitin and pentamer of chitosan produced the maximum activities at 36 h after treatment as compared to controls. Total phenolic content of soybean leaves increased following chitosan and chitin oligomer treatments, showing a positive correlation between enzyme activity and total phenolic content.  相似文献   

8.
The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At 1 mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.  相似文献   

9.
Oxalate oxidase (OXO) utilizes oxalate to generate hydrogen peroxide, and thereby acts as a source of hydrogen peroxide. The present study was carried out to investigate whether apoplastic OXO modifies the metabolism of cell wall-bound ferulates in wheat seedlings. Histochemical staining of OXO showed that cell walls were strongly stained, indicating the presence of OXO activity in shoot walls. When native cell walls prepared from shoots were incubated with oxalate or hydrogen peroxide, the levels of ester-linked diferulic acid (DFA) isomers were significantly increased. On the other hand, the level of ester-linked ferulic acid (FA) was substantially decreased. The decrease in FA level was accounted neither by the increases in DFA levels nor by the release of FA from cell walls during the incubation. After the extraction of ester-linked ferulates, considerable ultraviolet absorption remained in the hemicellulosic and cellulose fractions, which was increased by the treatment with oxalate or hydrogen peroxide. Therefore, a part of FA esters may form tight linkages within cell wall architecture. These results suggest that cell wall OXO is capable of modifying the metabolism of ester-linked ferulates in cell walls of wheat shoots by promoting the peroxidase action via supply of hydrogen peroxide.  相似文献   

10.
Barley ( Hordeum vulgare L.) was grown in a glasshouse with 13.56 or 8.84 kJ m−2: biologically effective UV-B (280–320 nm: UV-BBE) simulating levels predicted to occur with 25 or 5% ozone depletion at 40°N latitude, with UV-A (320–400 mm), or with no supplemental irradiation. Activities of L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.5). chalcone-flavanone isomerase (CFI, EC 5.5.1.6) and peroxidase (EC 1.11.1.7) were determined from the 5th through the 30th day after planting. PAL regulates diversion of L-phenylalanine into precursors for secondary phenolics. CFI regulates an early step of flavonoid biosynthesis, and peroxidase activates phenolic precursors for cross-linking and rigidifying cell walls. At all ages UV-B decreased soluble protein leaf−1 but had little effect on fresh weight or CFI activity. Exposure to UV-B decreased peroxidase activity only slightly in early growth stages but decreased it about 40% by day 30. PAL activity was highest 5 days after planting under all treatments, decreased thereafter, and was not detectable in control plants after day 10. UV-B prolonged PAL activity through day 15 in plants given the highest level of UV-B. This UV-B prolongation of PAL activity is correlated with, and is a likely underlying mechanism to explain, the UV-B- enhanced accumulation of flavonoids and ferulic acid in barley primary leaves. The results are discussed in terms of barley leaf adaptation to UV-B as developmental response dependent on conditions of plant growth.  相似文献   

11.
In a recent publication (Kutschera, 1996), it was reported thatthe cell walls of growing rye coleoptiles exhibit irreversible(plastic) extensibility in a rheological extension test. Basicallysimilar measurements with cell walls of maize coleoptiles hadpreviously shown that the apparent plastic extensibility determinedin this material is in reality due to the slowly reversible(viscoelastic) extensibility of the walls. A recent reinvestigationof this discrepancy showed that rye coleoptile walls also behaveas a perfectly viscoelastic material if precautions are takento prevent measuring artefacts. Similar results were obtainedwith cell walls from the growing zone of various other seedlingorgans (maize mesocotyl, maize root, cucumber hypocotyl). Itis concluded that plastic extensibility has not yet been convincinglydemonstrated by rheological tests that determine the intrinsicmaterial properties of cell walls. Reported changes in mechanicalmaterial properties of cell walls produced by growth-controllingfactors such as auxin or light may generally be attributed tochanges in viscoelasticity which are not directly related tothe chemo-rheological processes controlling wall extension ofgrowing cells. Key words: Cell wall extensibility, extension growth, plastic cell wall extensibility, viscoelastic cell wall extensibility  相似文献   

12.
Irradiation of white fluorescent light (5 W m2) inhibitedthe growth of Oryza coleoptiles. Light irradiation increasedstress-relaxation parameters of coleoptile cell walls, minimumstressrelaxationtime and relaxation rate, and decreased cellwall extensibility (strain/load). Under light conditions, thecontents of ferulic and diferulic acids ester-linked to thehemicellulosic arabinose residue in cell walls increased andcorrelated with the modification of the cell wall mechanicalproperties. These results suggest that light irradiation enhancesthe formation of diferulic acid bridges in hemicelluloses, makingcell walls mechanically rigid and thus inhibits cell elongationin rice coleoptiles. Also, irrespective of coleoptile age orthe presence of light, the ratio of diferulic acid to ferulicacid was almost constant, suggesting that the rate limitingstep in the formation of diferulic acid bridges in Oryza cellwalls is in the step of feruloylation. (Received September 24, 1991; Accepted December 3, 1991)  相似文献   

13.
The growth rate of maize ( Zea mays L. cv. Cross Bantam T51) coleoptiles in the dark was highest at the basal zone and decreased towards the tip. Growth was strongly inhibited by white fluorescent light (5 W m−2), especially in the basal zone of coleoptiles. Light irradiation caused an increase in the values of stress-relaxation parameters, the minimum stress-relaxation time and the relaxation rate and a decrease in the extensibility (strain/stress) of the cell walls at all zones. In addition, during growth, the accumulation of osmotic solutes was strongly inhibited by white light irradiation, resulting in an increased osmotic potential. The influences of white light on the mechanical properties of the cell wall and the osmotic potential of the tissue sap were most prominent in the basal zone. Significant correlations were observed between the increment of coleoptile length and the mechanical properties of the cell walls or the osmotic potential of the tissue sap and osmotic solutes content. Furthermore, light inhibited the outward bending of split coleoptile segments. These facts suggest that white light inhibits elongation of maize coleoptiles by modifying both the mechanical properties of the cell walls and cellular osmotic potential, which control the rate of water uptake.  相似文献   

14.
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.  相似文献   

15.
In a culture system in which single cells isolated from the mesophyll of Zinnia elegans L. differentiate to tracheary elements (TEs), two inhibitors of phenylalanine ammonia-lyase (EC 4.3.1.5), L-α-aminooxy-β-phenylpropionic acid (AOPP) at 10 μM inhibited lignification without reducing the number of TEs formed. These inhibitors caused intracellular changes in peroxidase (EC 1.11.1.7) activities. The inhibitors increased the activity of peroxidases bound to the cell walls and especially the activity of peroxidase bound ionically to the cell walls. In contrast, the activity of extracellular peroxidase decreased. There were five isoenzymes, P1-P5, in the ionically bound peroxidase of cultured Zinnia cells. Among the isoenzymes, P4 and P5 appeared to be specific for TE differentation. Treatment with AOPP and AIP resulted in increases in the activities of P2, P4 and P5 isoenzymes, with the most prominent increase in P5 activity. The addition of lignin precursors, including coniferyl alcohol, to the AOPP-treated cells restored lignification, and suppressed the alteration of peroxidase isoenzyme patterns caused by AOPP. The relationship between the wall-bound peroxidases and lignification during TE differentiation is discussed in the light of these results.  相似文献   

16.
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles.  相似文献   

17.
Treatment with ethephon increased the concentration of exogenous ethylene in Medicago sativa L. embryogenic cell suspension cultures (consisting of single cells, small cellular clumps and globular somatic embryos) and induced changes in the metabolism of phenolic substances, activities of peroxidase (EC 1.11.1.7) and caused significant suppression of suspension culture growth. Treatment with the ethylene-releasing substance, ethephon, resulted in a several-fold increase in phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) activity above the basal level and was accompanied by an elevated accumulation of phenolic acids (significant increase of methoxy-substituted acids). The majority of newly synthesised phenolic acids was incorporated into the fractions of glycosides and esters bound to the cell wall. Phenolic glycosides seemed to serve as a metabolic pool from which the phenolics were utilised during further culture. The increased activity of wall-bound ionic peroxidase after ethephon application correlated with the pronounced incorporation of ferulic acid in the cell walls. In contrast, the increased level of exogenous ethylene did not influence the growth of culture of more advanced embryos nor did it significantly alter phenylpropanoid metabolism.  相似文献   

18.
Fungal elicitor-mediated responses in pine cell cultures   总被引:4,自引:0,他引:4  
A tissue culture system has been developed to examine phenylpropanoid metabolism induced in pine tissues by an ectomycorrhizal symbiont. An elicitor preparation from the ectomycorrhizal fungus Thelephora terrestris Fr. induced enhanced phenolic metabolism in suspension cultured cells of Pinus banksiana Lamb., as indicated by tissue lignification and accumulation of specific methanol-extractable compounds in the cells. Induction of lignification was observed as early as 12 h after elicitation. The activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), the entry-point enzyme into phenylpropanoid metabolism, also increased within the same time-frame in elicited cells. Significant increases in PAL activity were evident by 6 h after elicitation, and, by 12 h after elicitation, PAL activity in elicited cells was ten times greater than that in the corresponding controls. Lignification of the elicited tissue was also accompanied by an increase in the activity of other enzymes associated with lignin synthesis, including caffeic acid O-methyl transferase (EC 2.1.1.46), hydroxycinnamate:CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-), coniferin glucosidase (EC 3.2.1.21) and peroxidase (EC 1.11.1.7). The increase in total peroxidase activity was associated with a change in the pattern of soluble peroxidase isoforms. The pine cell culture-ectomycorrhizal elicitor system provides a good model for molecular analysis of the process of lignification in an economically important softwood species.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 4CL hydroxycinnamate:Coenzyme A ligase (EC 6.2.1.12) - CAD cinnamyl alcohol dehydrogenase (EC 1.1.1.-) - COMT S-adenosyl-l-methionine:caffeate O-methyl transferase (EC 2.1.1.46) - HPLC high-pressure liquid chromatography - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - TGA thioglycolic acid To whom correspondence should be addressedFinancial assistance for this work was provided by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

19.
The present study was conducted to investigate the effects of enhanced Ca supply on Al toxicity in relation to cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in Al resistance. Seedlings of Al-tolerant Inia66 and Al-sensitive Kalyansona cultivars were grown in complete nutrient solutions for 4 days then subjected to treatment solutions containing Al (0, 50 μM) and Ca (500, 2500 μM) at pH 4.5 for 24 h. Root elongation was affected greatly by Al treatment in the Al-sensitive cultivar and a significant improvement in root growth was observed with enhanced Ca supply during Al stress. Pectin and hemicellulose contents in the root cell walls increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides increased with Al treatment in the Al-sensitive cultivar and decreased with enhanced Ca supply. The increase in the molecular mass of hemicellulosic polysaccharides was attributed to increased content of glucose, arabinose and xylose in neutral sugars. Enhanced Ca supply slightly decreased the content of these components with Al stress. Aluminum treatment increased the contents of ferulic and p-coumaric acid, especially in the Al-sensitive cultivar, by increasing peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia lyase (PAL, EC 4.3.1.5) activity, whereas enhanced Ca supply during Al stress decreased the content of these components by decreasing POD and PAL activity. These results suggest that the increased molecular mass of hemicellulosic polysaccharides and phenolic compounds in the Al-sensitive cultivar with Al stress might have inhibited root elongation associated with cell wall stiffening related to cross-linking among cell-wall polymers and lignin. Enhanced Ca supply might maintain the normal synthesis of these materials even with Al stress.  相似文献   

20.
Elongation growth of dark grown maize (Zea mays L cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of beta-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of beta-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号