首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nef gene of human and simian immunodeficiency viruses is critical for AIDS pathogenesis. Its function in vivo is unknown, but in vitro natural isolates of Nef down-regulate expression of the cell surface CD4 molecule, a component of the T cell antigen receptor and the viral receptor, by accelerating its endocytosis. We have used chimeric proteins comprised of the natural HIV-1 NA7 Nef fused to a strongly fluorescing mutant of green fluorescent protein (GFP) to correlate Nef function with intracellular localization in human CD4-positive Jurkat T cells. The NA7-GFP fusion protein co-localizes with components of the clathrin coat, including clathrin and the beta-subunit of the AP-2 adaptor protein complex, at discrete locations that are consistent with the normal cellular distribution of clathrin coats at the plasma membrane. The NA7-GFP protein is also found in the perinuclear region of the cell, which is likely to reflect the Golgi apparatus. Evidence from a CD4-negative fibroblast cell line indicates that co-localization of NA7-GFP with components of the clathrin coat does not require expression of the CD4 molecule. Analysis of a large panel of chimeric molecules containing mutant Nef moieties demonstrated that the N-terminal membrane targeting signal cooperates with additional element(s) in the disordered loops in the Nef molecule to co-localize the Nef protein with AP-2 adaptor complexes at the cell margin. This localization of NA7-GFP correlates with, but is not sufficient for, down-regulation of surface CD4 and at least one additional function of Nef is required. In T cells co-expressing CD4 and NA7-GFP, CD4 at the cell surface is redistributed into a discrete pattern that co-localizes with that of NA7-GFP. Our observations place NA7-GFP in physical proximity to AP-2-containing clathrin coat at the plasma membrane and imply that Nef interacts, either directly or indirectly, with a component of the AP-2-containing coat at this location. This evidence supports a model whereby Nef recruits CD4 to the endocytic machinery via AP-2-containing clathrin coats at the plasma membrane.  相似文献   

2.
The HIV-1 accessory protein viral protein R (Vpr) causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage-signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45alpha was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4-3 vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked.  相似文献   

3.
The human immunodeficiency virus type 1 Nef protein alters the post-Golgi stages of major histocompatibility complex class I (MHC-I) biogenesis. Presumed mechanisms involve the disclosure of a cryptic tyrosine-based sorting signal (YSQA) located in the cytoplasmic tail of HLA-A and -B heavy chains. We changed this signal for a prototypic sorting motif (YSQI or YSQL). Modified HLA-A2 molecules, termed A2-endo, displayed constitutively low surface levels and accumulated in a region close to or within the Golgi apparatus, a behavior reminiscent of wild-type HLA-A2 in Nef-expressing cells. However, several lines of evidence indicate that the action of prototypic signals on MHC-I trafficking differs from that of Nef. Internalization of surface A2-endo was more rapid and was associated with efficient recycling to the surface. A transdominant-negative mutant of dynamin-1 inhibited A2-endo constitutive internalization and Nef-induced CD4 down-regulation, whereas it did not affect the activity of Nef on MHC-I. Moreover, trafficking of A2-endo was still affected by the viral protein, indicating additive effects of prototypic signals and Nef. Therefore, distinct trafficking pathways regulate clathrin-dependent and Nef-induced MHC-I modulation.  相似文献   

4.
The human cytomegalovirus-encoded glycoproteins US2 and US11 target newly synthesized major histocompatibility complex class I heavy chains for degradation by mediating their dislocation from the endoplasmic reticulum back into the cytosol, where they are degraded by proteasomes. A functional ubiquitin system is required for US2- and US11-dependent dislocation of the class I heavy chains. It has been assumed that the class I heavy chain itself is ubiquitinated during the dislocation reaction. To test this hypothesis, all lysines within the class I heavy chain were substituted. The lysine-less class I molecules could no longer be dislocated by US2 despite the fact that the interaction between the two proteins was maintained. Interestingly, US11 was still capable of dislocating the lysine-less heavy chains into the cytosol. Ubiquitination does not necessarily require lysine residues but can also occur at the N terminus of a protein. To investigate the potential role of N-terminal ubiquitination in heavy chain dislocation, a lysine-less ubiquitin moiety was fused to the N terminus of the class I molecule. This lysine-less fusion protein was still dislocated in the presence of US11. Ubiquitination could not be detected in vitro, either for the lysine-less heavy chains or for the lysine-less ubiquitin-heavy chain fusion protein. Our data show that although dislocation of the lysineless class I heavy chains requires a functional ubiquitin system, the heavy chain itself does not serve as the ubiquitin acceptor. This finding sheds new light on the role of the ubiquitin system in the dislocation process.  相似文献   

5.
The R-SNARE VAMP4, which contains a dileucine motif, binds to the AP-1 (adaptor protein-1) subunit μ1a, but not μ1b, or the GGAs (Golgi-associated gamma ear containing ARF binding proteins). Serine 20 and leucines 25,26 are essential for this binding. AP-1 association with VAMP4 is enhanced when serine 30, in an acidic cluster, is phosphorylated by casein kinase 2. This phosphorylation-dependent modulation of AP-1 binding is mediated by PACS-1 (phosphofurin acidic cluster sorting protein). Ablation of both the dileucine motif and serine 30 results in a dramatic mislocalization of VAMP4 in the regulated secretory pathway in AtT20 cells. A dominant-negative PACS-1, which binds acidic clusters but not AP-1, also causes mislocalization of VAMP4. Our data support a model whereby phosphorylation-dependent recruitment of PACS-1 enhances AP-1 association to cargo, and suggest that efficient retrieval depends on the formation of a complex between cargo, such as VAMP4, AP-1 and PACS-1.  相似文献   

6.
The N-terminal alpha-helix domain of the human immunodeficiency virus type 1 (HIV-1) Nef protein plays important roles in enhancement of viral infectivity, virion incorporation of Nef, and the down-regulation of major histocompatibility complex class I (MHC-I) expression on cell surfaces. In this study, we demonstrated that Met 20 in the alpha-helix domain was indispensable for the ability of Nef to modulate MHC-I expression but not for other events. We also showed that Met 20 was unnecessary for the down-regulation of CD4. These findings indicate that the region governing MHC-I down-regulation is proximate in the alpha-helix domain but is dissociated functionally from that determining enhancement of viral infectivity, virion incorporation of Nef, and CD4 down-regulation.  相似文献   

7.
During the assembly of enveloped viruses viral and cellular components essential for infectious particles must colocalize at specific membrane locations. For the human and simian immunodeficiency viruses (HIV and SIV), sorting of the viral envelope proteins (Env) to assembly sites is directed by trafficking signals located in the cytoplasmic domain of the transmembrane protein gp41 (TM). A membrane proximal conserved GYxx? motif mediates endocytosis through interaction with the clathrin adaptor AP-2. However, experiments with SIV(mac239) Env indicate the presence of additional signals. Here we show that a conserved C-terminal dileucine in HIV(HxB2) also mediates endocytosis. Biochemical and morphological assays demonstrate that the C-terminal dileucine motif mediates internalization as efficiently as the GYxx? motif and that both must be removed to prevent Env internalization. RNAi experiments show that depletion of the clathrin adaptor AP-2 leads to increased plasma membrane expression of HIV Env and that this adaptor is required for efficient internalization mediated by both signals. The redundancy of conserved endocytosis signals and the role of the SIV(mac239) Env GYxx? motif in SIV pathogenesis, suggest that these motifs have functions in addition to endocytosis, possibly related to Env delivery to the site of viral assembly and/or incorporation into budding virions.  相似文献   

8.
Major-histocompatibility-complex (MHC) proteins are used to display, on the surface of a cell, peptides derived from foreign material - such as a virus - that is infecting that cell. Cytotoxic T lymphocytes then recognize and kill the infected cell. The HIV-1 Nef protein downregulates the cell-surface expression of class I MHC proteins, and probably thereby promotes immune evasion by HIV-1. In the presence of Nef, class I MHC molecules are relocalized from the cell surface to the trans-Golgi network (TGN) through as-yet-unknown mechanisms. Here we show that Nef-induced downregulation of MHC-I expression and MHC-I targeting to the TGN require the binding of Nef to PACS-1, a molecule that controls the TGN localization of the cellular protein furin. This interaction is dependent on Nef's cluster of acidic amino acids. A chimaeric integral membrane protein containing Nef as its cytoplasmic domain localizes to the TGN after internalization, in an acidic-cluster- and PACS-1-dependent manner. These results support a model in which Nef relocalizes MHC-I by acting as a connector between MHC-I's cytoplasmic tail and the PACS-1-dependent protein-sorting pathway.  相似文献   

9.
Human immunodeficiency virus, type 1, negative factor (Nef) initiates down-regulation of cell-surface major histocompatibility complex-I (MHC-I) by assembling an Src family kinase (SFK)-ZAP70/Syk-phosphoinositide 3-kinase (PI3K) cascade through the sequential actions of two sites, Nef EEEE(65) and PXXP(75). The internalized MHC-I molecules are then sequestered in endosomal compartments by a process requiring Nef Met(20). How Nef assembles the multikinase cascade to trigger the MHC-I down-regulation pathway is unknown. Here we report that EEEE(65)-dependent binding to the sorting protein PACS-2 targets Nef to the paranuclear region, enabling PXXP(75) to bind and activate a trans-Golgi network (TGN)-localized SFK. This SFK then phosphorylates ZAP-70 to recruit class I PI3K by interaction with the p85 C-terminal Src homology 2 domain. Using splenocytes and embryonic fibroblasts from PACS-2(-/-) mice, we confirm genetically that Nef requires PACS-2 to localize to the paranuclear region and assemble the multikinase cascade. Moreover, genetic loss of PACS-2 or inhibition of class I PI3K prevents Nef-mediated MHC-I down-regulation, demonstrating that short interfering RNA knockdown of PACS-2 phenocopies the gene knock-out. This PACS-2-dependent targeting pathway is not restricted to Nef, because PACS-2 is also required for trafficking of an endocytosed cation-independent mannose 6-phosphate receptor reporter from early endosomes to the TGN. Together, these results demonstrate PACS-2 is required for Nef action and sorting of itinerant membrane cargo in the TGN/endosomal system.  相似文献   

10.
ErbB2, a member of the epidermal growth factor receptor family, is overexpressed in a number of human cancers. In contrast to the epidermal growth factor receptor, ErbB2 is normally endocytosis resistant. However, ErbB2 can be down-regulated by inhibitors of heat shock protein 90, such as geldanamycin. We now show that geldanamycin induces endocytosis and lysosomal degradation of full-length ErbB2. We further report that the endocytosis of ErbB2 is dynamin and clathrin dependent. When ErbB2 was retained at the plasma membrane due to knockdown of clathrin heavy chain, the intracellular part of ErbB2 was degraded in a proteasomal manner. However, our data strongly suggest that proteasomal activity is not required for geldanamycin-induced endocytosis of ErbB2 in SKBr3 cells. Interestingly, however, proteasomal inhibitors retarded degradation of ErbB2, and electron microscopy analysis strongly suggested that proteasomal activity is required to sort internalized ErbB2 to lysosomes. Because geldanamycin derivatives and inhibitors of proteasomal activity are both used in experimental cancer treatment, knowledge of molecular mechanisms involved in geldanamycin-induced down-regulation of ErbB2 is important for future design of cancer treatment.  相似文献   

11.
Newly synthesized MHC II alpha- and beta-chains associated with the invariant chain chaperone (Ii) enter the endocytic pathway for Ii degradation and loading with peptides before transport to the cell surface. It is unclear how alphabetaIi complexes are sorted from the Golgi apparatus and directed to endosomes. However, indirect evidence tends to support direct transport involving the AP1 clathrin adaptor complex. Surprisingly, we show here that knocking down the production of AP1 by RNA interference did not affect the trafficking of alphabetaIi complexes. In contrast, AP2 depletion led to a large increase in surface levels of alphabetaIi complexes, inhibited their rapid internalization, and strongly delayed the appearance of mature MHC II in intracellular compartments. Thus, in the cell systems studied here, rapid internalization of alphabetaIi complexes via an AP2-dependent pathway represents a key step for MHC II delivery to endosomes and lysosomes.  相似文献   

12.
We studied the intracellular traffic and subcellular distribution of MHC class I and class II antigens in comparison with a recycling surface glycoprotein, the transferrin receptor (Tfr), in the human lymphoblastoid cell line JY. No internalization was detectable for class I molecules. Class II molecules were internalized but did not recycle. In contrast, Tfr was found to internalize and recycle. The biosynthetic pathway of class II molecules differ from that of class I molecules in that it shows a delay (1-3 hr) in transport from trans-Golgi to cell surface: here it intersects the endocytic route. Immunoelectron microscopy using anti-MHC antibodies revealed the existence of vesicular structures that were intensely labeled for class II molecules. It is proposed that at this site combination of class II molecules with processed antigen could occur.  相似文献   

13.
The ability of HIV-1 to evade the host immune response leads to the establishment of chronic infection. HIV-1 has been reported to up-regulate MHC I molecules on the surface of thymocytes from HIV-1-infected thymus. We demonstrate in this study that HIV-1 up-regulates MHC I on both HIV-1-infected and uninfected thymocytes in a manner that is independent of Nef, proportional to viral replication, and entirely mediated by IFN-alpha. IL-3Ralpha+ type 2 predendritic cells (preDC2) resident in the thymic medulla secrete IFN-alpha, which acts on IFN-alphabetaR-expressing immature thymocytes to induce MHC I expression. Furthermore, thymic preDC2 are permissive for HIV-1 infection and positive for intracellular p24. These data demonstrate the ability of IFN-alpha secreted by preDC2 to induce MHC I up-regulation in the HIV-1-infected human thymus.  相似文献   

14.
Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.  相似文献   

15.
We have reported that Burkitt lymphomas (BL) that arise in HLA-A11 positive individuals are resistant to lysis by HLA-A11-specific and HLA-A11-restricted CTLs(10,11). Here we show that this phenomenon can be explained by a selective loss of the HLA-A11 polypeptide. The HLA-A11 negative phenotype is due to a regulatory phenomenon, rather than a structural defect, as proven by the ability to rescue expression of HLA-A11 in in vitro Epstein-Barr virus (EBV)-converted sublines of EBV negative BLs.  相似文献   

16.
Antigenic peptides derived from viral proteins by multiple proteolytic cleavages are bound by MHC class I molecules and recognized by CTL. Processing predominantly takes place in the cytosol of infected cells by the action of proteasomes. To identify other proteases involved in the endogenous generation of viral epitopes, specifically those derived from proteins routed to the secretory pathway, we investigated presentation of the HIV-1 ENV 10-mer epitope 318RGPGRAFVTI327 (p18) to specific CTL in the presence of diverse protease inhibitors. Both metalloproteinase and proteasome inhibitors decreased CTL recognition of the p18 epitope expressed from either native gp160 or from a chimera based on the hepatitis B virus secretory core protein as carrier protein. Processing of this epitope from both native ENV and the hepatitis B virus secretory core chimeric protein appeared to proceed by a TAP-dependent pathway that involved sequential cleavage by proteasomes and metallo-endopeptidases; however, other protease activities could replace the function of the lactacystin-sensitive proteasomes. By contrast, in a second TAP-independent pathway we detected no contribution of metallopeptidases for processing the ENV epitope from the chimeric protein. These results show that, in the classical TAP-dependent MHC class I pathway, endogenous Ag processing of viral proteins to yield the p18 10-mer epitope requires metallo-endopeptidases in addition to proteasomes.  相似文献   

17.
18.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef directs virus escape from immune surveillance by subverting host cell intracellular signaling and membrane traffic to down-regulate cell-surface major histocompatibility complex class I (MHC-I). The interaction of Nef with the sorting proteins PACS-1 and PACS-2 mediates key signaling and trafficking steps required for Nef-mediated MHC-I down-regulation. Little is known, however, about the molecular basis underlying the Nef-PACS interaction. Here we identify the sites on Nef and the PACS proteins required for their interaction and describe the consequences of disrupting this interaction for Nef action. A previously unidentified cargo subsite on PACS-1 and PACS-2 interacted with a bipartite site on Nef formed by the EEEE(65) acidic cluster on the N-terminal domain and W(113) in the core domain. Mutation of these sites prevented the interaction between Nef and the PACS proteins on Rab5 (PACS-2 and PACS-1)- or Rab7 (PACS-1)-positive endosomes as determined by bimolecular fluorescence complementation and caused a Nef mutant defective in PACS binding to localize to distorted endosomal compartments. Consequently, disruption of the Nef-PACS interaction repressed Nef-induced MHC-I down-regulation in peripheral blood mononuclear cells. Our results provide insight into the molecular basis of Nef action and suggest new strategies to combat HIV-1.  相似文献   

19.
The negative signaling receptor cytolytic T lymphocyte-associated Ag-4 (CTLA-4) resides primarily in intracellular compartments such as the Golgi apparatus of T cells. However, little is known regarding the molecular mechanisms that influence this accumulation. In this study, we demonstrate binding of the clathrin adaptor complex AP-1 with the GVYVKM motif of the cytoplasmic domain of CTLA-4. Binding occurred primarily in the Golgi compartment of T cells, unlike with AP-2 binding that occurs mostly with cell surface CTLA-4. Although evidence was not found to implicate AP-1 binding in the retention of CTLA-4 in the Golgi, AP-1 appears to play a role in shuttling of excess receptor from the Golgi to the lysosomal compartments for degradation. In support of this, increased CTLA-4 synthesis resulted in an increase in CTLA-4/AP-1 binding and a concomitant increase in the appearance of CTLA-4 in the lysosomal compartment. At the same time, the level of intracellular receptor was maintained at a constant level, suggesting that CTLA-4/AP-1 binding represents one mechanism to ensure steady state levels of intracellular CTLA-4 in T cells. Finally, we demonstrate that the TCR zeta/CD3 complex (but not CD28) also binds to AP-1 and AP-2 complexes, thus providing a possible link between these two receptors in the regulation of T cell function.  相似文献   

20.
The AP-2 complex is a key factor in the formation of endocytic clathrin-coated vesicles (CCVs). AP-2 sorts and packages cargo membrane proteins into CCVs, binds the coat protein clathrin, and recruits numerous other factors to the site of vesicle formation. Structural information on the AP-2 complex and biochemical work have allowed understanding its function on the molecular level, and recent studies showed that cycles of phosphorylation are key steps in the regulation of AP-2 function. The complex is phosphorylated on both large subunits (alpha- and beta2-adaptins) as well as at a single threonine residue (Thr-156) of the medium subunit mu2. Phosphorylation of mu2 is necessary for efficient cargo recruitment, whereas the functional context of the large subunit phosphorylation is unknown. Here, we show that the subunit phosphorylation of AP-2 exhibits striking differences, with calculated half-lives of <1 min for mu2, approximately 25 min for beta2, and approximately 70 min for alpha. We were also able to purify a phosphatase that dephosphorylates the mu2 subunit. The enzyme is a member of the protein phosphatase 2A family and composed of a catalytic Cbeta subunit, a scaffolding Abeta subunit, and a regulatory Balpha subunit. RNA interference knock down of the latter subunit in HeLa cells resulted in increased levels of phosphorylated adaptors and altered endocytosis, showing that a specific PP2A holoenzyme is an important regulatory enzyme in CCV-mediated transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号