首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sympatric species derive benefits by attending to information conveyed by heterospecifics. Our previous finding of reduced vigilance among jackdaws and lesser kestrels residing in mixed‐species colonies suggested a reliance on interspecific communication of information regarding predatory threats. To test for interspecific communication of threat, we first determined whether jackdaw and lesser kestrel call structure varied with perceived threat. In this call production phase of our study, free‐living birds in mixed‐species colonies were presented with models representing a potential nest predator (European magpie) or with non‐threatening stimuli (wood pigeon or wooden dowel) in proximity to nests. We recorded and subsequently analysed those calls to determine if any temporal or frequency‐related call parameters differed by model type. In a second, perceptual phase of our study, we tested whether receivers perceive threat‐related variation in both conspecific and heterospecific call structure by playing back call exemplars recorded in response to the predator model or to innocuous control stimuli, to determine whether free‐living jackdaws or lesser kestrels respond differentially to playbacks of the different call types. We detected differences in vocalizations of both jackdaws and lesser kestrels relative to the model type presented, with more broadband (lesser kestrel) or noisy calls (jackdaws) in response to magpie versus innocuous model types. We also detected differential behavioural responses to call playbacks, with both jackdaws and lesser kestrels increasing vigilance and alarm calling in response to magpie‐elicited jackdaw calls, but not to other call types. Taken together, our results suggest that jackdaw, but not lesser kestrel vocalizations, communicate enhanced threat associated with European magpies as possible nest predators. This interspecific alarm communication benefits both jackdaws and lesser kestrels, and, at least in part, explains asymmetric responses of jackdaws and lesser kestrels to magpies attending mixed‐species colonies in nature.  相似文献   

2.
Characteristics of arctic ground squirrel alarm calls   总被引:2,自引:0,他引:2  
Summary Arctic ground squirrels, Citellus undulatus, produce six distinctly different sounds. Each of these sounds may represent a signal in itself, but combinations of these acoustic elements or repetition of a single element produce additional signals. Several of these signals serve as alarm calls. One sound element consists of a short (0.05 sec) broad frequency chat while another is a longer (0.16 to 0.25 sec) descending narrow frequency whistle. Squirrels utter three-note chatter calls when approached by a ground predator, and a series of five or more chatters, which fade in intensity, is given upon the close approach of a ground predator as the squirrel escapes into a burrow. A single whistle, which resembles the alarm call of some birds, is given upon the approach of an aerial predator. This call is repeated at approximately six to eight second intervals if the predator alights near a squirrel and remains nearby.  相似文献   

3.
This paper investigates, through experiments using surrogate predators, differences in intraspecific alarm calls between familiar and unfamiliar Bronze Mannikin Spermestes cucculatus groups. Four groups of mannikins were captured with mist nets from four areas in Durban (i.e. original groups) and randomly mixed (i.e. assorted groups). These groups were exposed to latex terrestrial snakes and mounted aerial raptors, and their alarm calls and predator response behaviours recorded. The Bronze Mannikins were able to discriminate between predators of different sizes, and increased their calling rate and decreased the end frequency of the alarm call in response to larger predators. This perhaps signalled increased threat, while simultaneously decreasing the conspicuousness of the flock. When the alarm call structure of the original and assorted groups in response to both raptors and snakes was compared, birds in original groups called more often, but paused longer between calls. Anti-predator behaviour differed in that assorted groups were less vigilant and aggressive toward the predators and panicked more frequently. In these groups, a failure to transfer the predation threat information might have caused the group to stop behaving cohesively and reliably. The manipulated experiments carried out in this study indicated that Bronze Mannikins were able to communicate predator size risk to conspecifics, but not as successfully to unfamiliar group members, showing that the investment, probability through altruistic payback, is greater in stable groups.  相似文献   

4.
Studies on primate vocalisation have revealed different types of alarm call systems ranging from graded signals based on response urgency to functionally referential alarm calls that elicit predator‐specific reactions. In addition, alarm call systems that include both highly specific and other more unspecific calls have been reported. There has been consistent discussion on the possible factors leading to the evolution of different alarm call systems, among which is the need of qualitatively different escape strategies. We studied the alarm calls of free‐ranging saddleback and moustached tamarins (Saguinus fuscicollis and Saguinus mystax) in northeast Peru. Both species have predator‐specific alarm calls and show specific non‐vocal reactions. In response to aerial predators, they look upwards and quickly move downwards, while in response to terrestrial predators, they look downwards and sometimes approach the predator. We conducted playback experiments to test if the predator‐specific reactions could be elicited in the absence of the predator by the tamarins’ alarm calls alone. We found that in response to aerial alarm call playbacks the subjects looked significantly longer upwards, and in response to terrestrial alarm call playbacks they looked significantly longer downwards. Thus, the tamarins reacted as if external referents, i.e. information about the predator type or the appropriate reaction, were encoded in the acoustic features of the calls. In addition, we found no differences in the responses of S. fuscicollis and S. mystax whether the alarm call stimulus was produced by a conspecific or a heterospecific caller. Furthermore, it seems that S. fuscicollis terrestrial alarm calls were less specific than either S. mystax terrestrial predator alarms or either species’ aerial predator alarms, but because of the small sample size it is difficult to draw a final conclusion.  相似文献   

5.
Juvenile California ground squirrel responses to adult alarm calls and juvenile alarm calling may be modified during development to achieve adult form. Adult conspecific chatter and whistle alarm calls were played back to juvenile and adult ground squirrels at an agricultural field site. In response to chatter playbacks, adults spent more time visually orienting to the environment and less time out of view and in covered habitats than juveniles; the converse was true in response to whistle playbacks. To test the evocativeness of juvenile calling, a subset of adult subjects received juvenile chatter and whistle playbacks. Adults spent less time out of view to juvenile call types than to adult calls, and showed more similar responses to juvenile chatters and whistles than to adult chatters and whistles. Age differences in the ground squirrel's alarm call system may reflect adjustments to changing risks during development.  相似文献   

6.
Different mechanisms have been proposed for encoding information into vocalizations: variation of frequency or temporal characteristics, variation in the rate of vocalization production, and use of different vocalization types. We analyze the effect of rate variation on the dual function of chip calls (contact and alarm) produced by White‐eared Ground‐sparrows (Melozone leucotis). We conducted an acoustic playback experiment where we played back 1 min of four chip call rates (12, 36, 60, 84 calls/min). We measured the response of territorial pairs using behavioral responses, and fine structural features of calls produced in response to those playbacks. White‐eared Ground‐sparrows showed more intense behavioral responses to higher than lower call rate playbacks. Both individuals of the pair approached the source of the playback stimulus faster, produced the first vocalization faster, produced more vocalizations, and spent more time close to the stimulus in higher call rate than in lower call rate playbacks. Frequency and duration characteristics of calls (chip and tseet) were similar in response to all call rate playbacks. Our playback experiment elicited different intensity of behavioral responses, suggesting that risk‐based information is encoded in call rate. Our results suggest that variation in the rate of chip call production serves a dual function in this species; calls are used at lower rates for pair contact and at higher rates for alarm/mobbing signals.  相似文献   

7.
We used playback experiments to test whether alarm calls affected the foraging behavior of eastern chipmunks (Tamias striatus). We subjected chipmunks, foraging at artificial feeding stations, to three playback treatments (silent, control noise, and alarm call) and examined changes in vigilant and foraging behavior. Chipmunks responded to alarm calls with a greater degree and duration of vigilant behavior, such as look‐ups and alert postures. Chipmunks also ran a shorter distance to cover and took longer to re‐emerge from the burrow after hearing an alarm call. Alarm calls caused individuals to spend more time exposed at the feeding stations; however, individuals also took significantly fewer seeds after hearing an alarm call. This was not due to a difference in the time spent handling food, but rather to a slower rate of loading. Chipmunks appear to sacrifice energy gain by increasing vigilance after hearing an alarm call. This study suggests that to avoid the costs of unnecessary escape behavior, individuals directly assess their own risk rather than relying only on indirect cues such as alarm calls.  相似文献   

8.
Nonlinear vocal phenomena are a ubiquitous feature of human and non-human animal vocalizations. Although we understand how these complex acoustic intrusions are generated, it is not clear whether they function adaptively for the animals producing them. One explanation is that nonlinearities make calls more unpredictable, increasing behavioural responses and ultimately reducing the chances of habituation to these call types. Meerkats (Suricata suricatta) exhibit nonlinear subharmonics in their predator alarm calls. We specifically tested the ‘unpredictability hypothesis’ by playing back naturally occurring nonlinear and linear medium-urgency alarm call bouts. Results indicate that subjects responded more strongly and foraged less after hearing nonlinear alarm calls. We argue that these findings support the unpredictability hypothesis and suggest this is the first study in animals or humans to show that nonlinear vocal phenomena function adaptively.  相似文献   

9.
Ben Walton 《Bioacoustics.》2013,22(6):592-603
ABSTRACT

Alarm vocalizations are a common feature of the mammalian antipredator response. The meaning and function of these calls vary between species, with some species using calls to reference-specific categories of predators. Species can also use more than just the calls of conspecifics to detect threat, ‘eavesdropping’ on other species’ signalling to avoid predation. However, the evidence to date for both referential signalling and eavesdropping within primates is limited. We investigated two sympatric populations of wild lemur, the Coquerel’s sifaka Propithecus coquereli and the common brown lemur Eulemur fulvus, presenting them with playbacks of predator calls, conspecific alarm calls and heterospecific lemur alarm calls, and recorded their behavioural responses following the playbacks. Results suggest that the Coquerel’s sifaka may have functionally referential alarm calls with high specificity for aerial predators, but there was no evidence for any referential nature of the other call investigated. Brown lemurs appear to have a mixed alarm system, with one call being specific with respect to aerial predators. The other call investigated appeared to reference terrestrial predators. However, it was also used in other contexts, so does not meet the criteria for functional reference. Both species showed evidence for heterospecific alarm call recognition, with both the Coquerel’s sifaka and the brown lemurs responding appropriately to heterospecific aerial alarm calls.  相似文献   

10.
Many mammal and bird species respond to predator encounters with alarm vocalizations that generate risk‐appropriate responses in listeners. Two conceptual frameworks are typically applied to the information encoded in alarm calls and to associated anti‐predator behaviors. ‘Functionally referential’ alarm systems encode nominal classes or categories of risk in distinct call types that refer to distinct predation‐risk situations. ‘Risk‐based’ alarms encode graded or ranked threat‐levels by varying the production patterns of the same call types as the urgency of predation threat changes. Recent work suggests that viewing alarm‐response interactions as either referential or risk‐based may oversimplify how animals use information in decision‐making. Specifically, we explore whether graded alarm cues may be useful in classifying risks, supporting a referential decision‐making framework. We presented predator (hawk, owl, cat, snake) and control treatments to captive adult tufted titmice Baeolophus bicolor and recorded their vocalizations, which included ‘chick‐a‐dee’ mobbing calls (composed of chick and D notes), ‘seet’ notes, two types of contact notes (‘chip’, ‘chink’), and song. No single call type was uniquely associated with any treatment and the majority of acoustic measures varied significantly among treatments (46 of 60). The strongest models (ANOVA and classification tree analysis) grouped hawk with cat and owl, and control with snake, and were based on the number or proportion of a) chick and D notes per chick‐a‐dee call, b) chip versus chink notes produced following treatment exposure, and c) the frequency metrics of other note types. We conclude that (1) the predation‐threat information available in complex titmouse alarm calls was largely encoded in graded acoustic measures that were (2) numerous and variable across treatments and (3) could be used singly or in combinations for either ranking or classification of threats. We call attention to the potential use of mixed threat identification strategies, where risk‐based signal information may be used in referential decision‐making contexts.  相似文献   

11.
In this paper, I investigate how mother and infant spectral tarsiers, Tarsius spectrum, respond to the presence of potential predators. I conducted this study at Tangkoko Nature Reserve in Sulawesi, Indonesia, from June to November 1999. I exposed 2 infants to 3 types of potential predators (large models of birds of prey, large rubber snakes and the vocalizations of large birds of prey) for a total of 18 nights. Infants moved a greater distance from their parked location when exposed to rubber snakes (1.8 m) compared to nights when they were not exposed to potential predators (0.23 m). On the other hand, when large bird of prey models were placed near the parked infant, the infant did not move from its parked locale (0.05 m). Parked infants repeatedly gave alarm calls in response to the presentation of all potential predator types. When an infant produced an alarm call following the presentation of a potential predator, the mother responded with her own alarm call approximately 88% of the time. However, when an infant produced an inappropriate alarm call, the mother responded with her own alarm call only 19% of the time. These results suggest that spectral tarsier infants use alarm calls to ask questions about the things they encounter in their environment. Infants and mothers both produced a twittering alarm call in response to the bird of prey models, whereas they both produced a harsh loud call 3 times in rapid succession in response to the presence of the rubber snakes.  相似文献   

12.
Alarm calls are vocalisations animals give in response to predators which mainly function to alert conspecifics of danger. Studies show that numerous species eavesdrop on heterospecific calls to gain information about predator presence. Responding to heterospecific calls may be a learned or innate response, determined by whether the response occurs with or without prior exposure to the call. In this study, we investigated the presence of eavesdropping behaviour in zebra finches Taeniopygia guttata. This species is not known to possess a distinct alarm call to warn adult conspecifics of a threat, and could be relying on alarm calls of nearby heterospecifics for predator information. We used a playback experiment to expose captive zebra finches to three heterospecific sounds: an unfamiliar alarm call (from the chestnut‐rumped thornbill Acanthiza uropygialis), a familiar alarm call, and a familiar control (both from the noisy miner Manorina melanocephala). These calls were chosen to test if the birds had learnt to distinguish between the function of the two familiar calls, and if the acoustic properties of the unfamiliar alarm indicated presence of a threat to the finches. Our results showed that in response to the thornbill alarm, the birds reduced the rate of production of short calls. However, this decrease was also seen when considering both short and distance calls in response to the control sound. An increase in latency to call was also seen after the control stimulus when compared to the miner alarm. The time spent scanning increased in response to all three stimuli, but this did not differ between stimuli. There were no significant differences when considering the stimulus by time interaction for any of the three vigilance measures. Overall, no strong evidence was found to indicate that the captive zebra finches were responding to the heterospecific alarm stimuli with anti‐predator behaviour.  相似文献   

13.
Hornbills can distinguish between primate alarm calls   总被引:4,自引:0,他引:4  
Some mammals distinguish between and respond appropriately to the alarm calls of other mammal and bird species. However, the ability of birds to distinguish between mammal alarm calls has not been investigated. Diana monkeys (Cercopithecus diana) produce different alarm calls to two predators: crowned eagles (Stephanoaetus coronatus) and leopards (Panthera pardus). Yellow-casqued hornbills (Ceratogymna elata) are vulnerable to predation by crowned eagles but are not preyed on by leopards and might therefore be expected to respond to the Diana monkey eagle alarm call but not to the leopard alarm call. We compared responses of hornbills to playback of eagle shrieks, leopard growls, Diana monkey eagle alarm calls and Diana monkey leopard alarm calls and found that they distinguished appropriately between the two predator vocalizations as well as between the two Diana monkey alarm calls. We discuss possible mechanisms leading to these responses.  相似文献   

14.
The repetition of elements within an alarm signal is commonly thought to ensure that receivers have detected that signal, or to promote residual vigilance in light of the dangerous circumstances prompting the signal's initial production (tonic communication). Beyond alerting others and maintaining that state of alertness, however, repetitive signal elements may be parsed so as to encode information about the nature of potential threats. To determine how call length and variation in intersyllable latency might prove informative in the repetitive alarm vocalizations of Richardson's ground squirrels (Spermophilus richardsonii), we conducted a field‐based playback experiment quantifying antipredator responses to manipulated alarm calls. Free‐living juvenile squirrels were exposed to playbacks of 12 syllable (long) and six syllable (short) calls with a constant (monotonous) or changing (variable) call rate. The length of calls had no significant effect on the behaviour of call recipients during and immediately after call production; however, call recipients showed greater vigilance after the playback of monotonous calls than after variable calls. The absence of a call length effect is not consistent with tonic communication in the strict sense; rather, enhanced responsiveness to monotonous relative to variable calls suggests that multiple syllables, and the emergent patterns of intersyllable latency, communicate information about response urgency or the distance to a predatory threat. Only monotonous calls convey those aspects with any certainty on the part of the signaller and hence are selectively attended to by receivers.  相似文献   

15.
We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures - the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases). Neuronal rate vs. characteristic frequency profiles provided only a coarse representation of the calls’ frequency spectra. A comparison between the activity in the AI and those of subcortical structures showed a different transformation of the neuronal response patterns from the IC to the AI for individual calls: i) while the temporal representation of chirp remained unchanged, the representations of whistle and chutter were transformed at the thalamic level and the response to purr at the cortical level; ii) for the wideband calls (whistle, chirp) the rate representation of the call spectra was preserved in the AI and MGB at the level present in the IC, while in the case of low-frequency calls (chutter, purr), the representation was less precise in the AI and MGB than in the IC; iii) the difference in the response strength to natural and time-reversed whistle was found to be smaller in the AI than in the IC or MGB.  相似文献   

16.
Anti-predatory strategies of birds are diverse and may include predator-specific alarm calls. For example, oriental tit (Parus minor) parents can distinguish snakes from other predators and produce snake-specific referential vocalizations ("jar" call) when a snake poses a threat to their nest. The “jar” call has a very specific function to induce fledging of nestlings close to fledging age. This reaction ensures nestlings' survival in natural encounters with snakes that are capable of entering nest cavities and kill entire broods. Sciurid rodents, like chipmunks, may pose a similar threat to cavity-nesting birds. We explored the hypothesis that parents use the fledging-inducing alarm vocalizations in this situation, because chipmunks, like snakes, can kill the brood upon entering the nest cavity. We compared alarm calls of parents toward two predators (chipmunk and snake) who pose a similar threat to the nestlings in a nest cavity, and toward an avian predator (Eurasian jay) who cannot enter nest cavities and poses no threat to the nestlings in a nest. Our results show that the vocal responses of oriental tits were different among the three predators. This suggests that the acoustic properties of vocal responses to predators are different between predators of a similar hunting strategy (nest-cavity entering). The playback of recorded vocal responses of parents to chipmunks did not trigger the fledging of old nestlings, whereas the vocalizations toward a snake did, as shown by earlier studies. Our study suggests that the vocal response of parents does not carry information about the ability of predators to enter the nest cavity and confirms the special status of alarm calls triggered by snakes.  相似文献   

17.
Alarm vocalizations produced by prey species encountering predators can serve a variety of functions. North American red squirrels are a small-bodied mammal popularly known for producing loud, conspicuous alarm calls, but functional accounts of calling in this species are few and contradictory. We conducted research over a 3-yr period on a sample of 47 marked red squirrels in the foothills of the Canadian Rockies. We recorded the production of alarm calls during encounters with natural predators and in a series of simulated predator experiments. We tested for variation in call production patterns consistent with three traditional hypotheses concerning the conspecific warning functions of alarm calling: namely that they serve as warnings to kin, to potential mates, or to territorial neighbors with which callers have an established relationship. Patterns of calling did not provide clear support for any of these hypothesized functions. We consider several possible qualifications to our results. We also consider the possibility that conspicuous calls given by red squirrels during encounters with predators are directed at the predators themselves and function to announce their detection and possibly deter them. This possibility is consistent with additional life-history features of red squirrels including that they are a relatively solitary and territorial, food-hoarding species that produces the same conspicuous vocalizations in response to other squirrels intruding on their territory to steal cones. An important corollary of this account is that red squirrel alarm calls probably do not entail referentially specific messages about different types of predator, as proposed previously.  相似文献   

18.
Abstract The aim of this study was to investigate how information about the affective state is expressed in vocalizations. Alarm calls can serve as model systems with which to study this general question. Therefore, we examined the information content of terrestrial predator alarm calls of redfronted lemurs ( Eulemur fulvus rufus ), group-living Malagasy primates. Redfronted lemurs give specific alarm calls only towards raptors, whereas calls given in response to terrestrial predators (woofs) are also used in other situations characterized by high arousal. Woofs may therefore have the potential to express the perceived risk of a given threat. In order to examine whether different levels of arousal are expressed in call structure, we analysed woofs given during inter-group encounters or in response to playbacks of a barking dog, assuming that animals engaged in inter-group encounters experience higher arousal than during the playbacks of dog barks. A multivariate acoustic analysis revealed that calls given during group encounters were characterized by higher frequencies than calls given in response to playbacks of dog barks. In order to examine whether this change in call structure is salient to conspecifics, we conducted playback experiments with woofs, modified in either amplitude or frequencies. Playbacks of calls with increased frequency or amplitude elicited a longer orienting response, suggesting that different levels of arousal are expressed in call structure and provide meaningful information for listeners. In conclusion, the results of our study indicate that the information about the sender's affective state is expressed in the structure of vocalizations.  相似文献   

19.
Juvenile Richardson's ground squirrels (RGS; Spermophilus richardsonii) communicate response urgency by modulating the rate of syllable production in repetitive alarm calls, although longer call bouts do not promote more pronounced or longer‐lasting (tonic) vigilance in juvenile call recipients. We exposed free‐living adult RGS to playbacks of alarm calls differing in rate and length to determine whether adult receivers respond to the same alarm parameters as juveniles. Adult squirrels did not respond differentially to differences in call rate or length, suggesting that adult RGS do not attend to call rate as do juveniles. This difference in response may be attributable to a developmental change in the perceptual mechanisms by which individuals extract information regarding response urgency, but could also be a product of adult receivers devaluing information encoded in alarm calls emitted by relatively inexperienced juvenile signalers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号