首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in proteolytic activities in response to water deficiency have been investigated in ten genotypes of spring wheat (Triticum aestivum L.) differing in response to water deficit stress and ability to acclimate. To determine subcellular localization and the type of proteases, mesophyll protoplasts isolated from wheat leaves were purified. Proteolytic activities were assayed using azocasein in the case of vacuolar proteinases at pH 5.0 and 125I-lysozyme in the case of extravacuolar ATP-dependent proteinases at pH 8.2. ATP-dependent proteolytic activity was found to be confined to the extravacuolar fraction while the azocaseinolytic activity to vacuoles. Dehydration increased vacuolar azocaseinolytic activity at both stages of plant development (shooting and heading), but the increase was significantly lower in more tolerant genotypes. The extravacuolar energy-dependent 125I-lysozyme degradation was low at the shooting stage but it was higher in the genotypes with a greater critical water saturation deficit. At the heading phase in the non-acclimated flag leaves ATP-dependent 125I-lysozyme degradation decreased in a genotype-dependent manner, but was enhanced upon acclimation to the same extent irrespective to the genotype ability to acquire dehydration tolerance during acclimation. The results presented indicate that both pathways of protein degradation are interlinked upon dehydration and are genotype dependent.  相似文献   

2.
The effect of water stress on the respiratory energy demand for the main biosynthetic and transport processes was estimated in the leaves of spring wheat ( Triticum aestivum L. cv. San Pastore) acclimated and non-acclimated to drought. ATP-consuming processes were assessed from the effects of selective inhibitors of RNA synthesis, protein synthesis and proteolysis, Ca2+-ATPase and P-type ATPases on respiration. The proportions of energy consumed by these processes were compared with the theoretical ATP production calculated from the rate of oxygen consumption measured manometrically. Respiratory energy production increased significantly in both acclimated leaves and in leaves stressed by drought. In the fully grown wheat leaves, Ca2+-dependent reactions and protein turnover consumed about 37% and 34% of the total respiratory energy, respectively. The costs of ion transport constituted another 15% of the total ATP production. Both acclimation and drought stress in non-acclimated leaves resulted in a decrease of leaf sensitivity towards inhibitors of RNA and protein syntheses as well as a decrease in Ca2+-mediated processes; but also in an increase of leaf sensitivity towards inhibitors of proteolysis and ouabain-sensitive ATPase in non-acclimated plants. This indicates a shift in ATP input into the energy-requiring processes towards greater expenses for ion transport upon water deficit. However, in acclimated leaves under drought stress, distribution of respiratory energy became almost the same as in control plants.  相似文献   

3.
Singh  A.K.  Singhal  G.S. 《Photosynthetica》2001,39(1):23-27
Thermal stability of thylakoid membranes isolated from acclimated and non-acclimated wheat (Triticum aestivum L. cv. HD 2329) leaves under irradiation was studied. Damage to the photosynthetic electron transport activity was more pronounced in thylakoid membranes isolated from non-acclimated leaves as compared to thylakoid membrane isolated from acclimated wheat leaves at 35 °C. The loss of D1 protein was faster in non-acclimated thylakoid membrane as compared to acclimated thylakoid membranes at 35 °C. However, the effect of elevated temperature on the 33 kDa protein associated with oxygen evolving complex in these two types of thylakoid membranes was minimal. Trypsin digestion of the 33 kDa protein in the thylakoid membranes isolated from control and acclimated seedlings suggested that re-organisation of 33 kDa protein occurs before its release during high temperature treatment.  相似文献   

4.
Effects of Low Temperature on Winter Wheat and Cabbage Leaves   总被引:1,自引:0,他引:1  
Contents of soluble proteins, proline and chlorophyll in winter wheat (Triticum aestivum cv. Doğu-88) and cabbage leaves (Brassica oleracea convar. acephala) during acclimation to low temperature were investigated. When both of the plants species were cold acclimated, soluble proteins, proline and chlorophyll contents were higher than in the controls (non-acclimated). Also protein patterns differed between the plants at control and cold conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Abiotic stresses cause ROS accumulation, which is detrimental to plant growth. It is well known that acclimation of plants under mild or sub-lethal stress condition leads to development of resistance in plants to severe or lethal stress condition. The generation of ROS and subsequent oxidative damage during drought stress is well documented in the crop plants. However, the effect of drought acclimation treatment on ROS accumulation and lipid peroxidation has not been examined so far. In this study, the effect of water stress acclimation treatment on superoxide radical (O(2)(-z.rad;)) accumulation and membrane lipid peroxidation was studied in leaves and roots of wheat (Triticum aestivum) cv. C306. EPR quantification of superoxide radicals revealed that drought acclimation treatment led to 2-fold increase in superoxide radical accumulation in leaf and roots with no apparent membrane damage. However under subsequent severe water stress condition, the leaf and roots of non-acclimated plants accumulated significantly higher amount of superoxide radicals and showed higher membrane damage than that of acclimated plants. Thus, acclimation-induced restriction of superoxide radical accumulation is one of the cellular processes that confers enhanced water stress tolerance to the acclimated wheat seedlings.  相似文献   

6.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

7.
Exposure of plant cells and tissues to low or freezing temperatures often lead to uncontrolled and detrimental ion leakage. Therefore, when plants acclimate to low temperatures, processes that control ionic homeostasis are important. Here we characterized H+ ATPase and ATP-dependent Ca2+ transport activities in isolated plasma membranes of cold-acclimated and non-acclimated winter rye leaves (Secale cereale L. cv. Voima). Cold acclimation resulted in a two-fold higher Ca2+ transport activity, significantly different (P = 0.021) from that of non-acclimated rye, whereas only a small increase in H+ ATPase activity, measured as ATP hydrolysis, was observed in cold-acclimated compared to non-acclimated preparations. In plasma membranes, extensively washed with EDTA and Brij 58 to remove endogenous calmodulin, Ca2+ transport activity increased to about double by calmodulin addition, with both non-acclimated and cold-acclimated material. Uptake of Ca2+ was seen within the pHrange analyzed (pH 6–8), with an optimum at pH 7.2 with both materials, and both in the absence and in the presence of calmodulin. The increase in activity of ATP-dependent Ca2+ transport in cold-acclimated rye plasma membranes probably reflects the capacity needed to sustain the resting level of cytosolic Ca2+ concentration that is characteristic to the cold-acclimated situation.  相似文献   

8.
A number of morphological, physiological and phenological traits have been suggested as significant markers of adaptation to drought in bread wheat (Triticum aestivum L.). This study was aimed at the identification of a relationship between dehydroascorbate reductase (DHAR, EC 1.8.5.1) and catalase (CAT, EC 1.11.1.6) activities in leaves of wheat plants and stability of yield components under water deficit. The single chromosome substitution lines of cv. Chinese Spring carrying separate chromosomes from the donor Synthetic 6x, an artificial hexaploid combining the genomes of the two wild species, Triticum dicoccoides (AABB) and Aegilops tauschii (DD), were the objects of the investigations. The activities of the DHAR and CAT were correlated with flag leaf relative water content and two indexes of stability of grain yield components under drought across the set substitution lines. The lines carrying a synthetic hexaploid homologous pair of chromosomes 1B, 1D, 2D, 3D or 4D all expressed a low constitutive level of DHAR and the lines carrying chromosomes 3B, 1D, 2D and 3D a low constitutive level of CAT. All were able to increase this level (by fourfold for DHAR and by 1.5-fold for CAT) in response to stress caused by water deficit. When challenged by drought stress, these lines tended to be the most effective in retaining the water status of the leaves and preventing the grain yield components from being compromised. The discovered genetic variability for enzymes activity in leaves of wheat might be a useful selection criterion for drought tolerance.  相似文献   

9.
Seedlings of three wheat varieties (Triticum aestivum L.)—highly productive cv. Ballada, moderately productive cv. Belchanka, and low productive cv. Beltskaya—were exposed to progressive soil drought (cessation of watering for 3, 5, and 7 days) and then analyzed for chlorophyll content and activities of ferredoxin-NADP+ oxidoreductase (FNR) and antioxidant enzymes, namely, glutathione reductase (GR) and ascorbate peroxidase (AscP). In addition, the proline content, and the extent of lipid peroxidation were examined. In the first period of water limitation, the water loss from leaves was slight for all wheat cultivars, which is characteristic of drought-resistant varieties. After 7-day drought the leaf water content decreased by 5.2–6.8%. The total chlorophyll content expressed per unit dry weight increased insignificantly during the first two periods of drought but decreased by 13–15% later on. This decrease was not accompanied by changes in chlorophyll a/b ratio. The plant dehydration did not induce significant changes in FNR activity. Activities of GR and AscP in leaves of wheat cultivars Ballada and Belchanka increased on the 3rd and 5th days of drought. Owing to the coordinated increase in GR and AscP activities, the lipid peroxidation rate remained at nearly the control level observed in water-sufficient plants. When the dehydration period was prolonged to 7 days, activities of GR and AscP in wheat cultivars reduced in parallel with the increase in malonic dialdehyde (MDA) content, indicating that the antioxidant enzyme defense system was weakened and lipid peroxidation enhanced. Unlike Ballada and Belchanka, the wheat cv. Beltskaya did not exhibit the increase in GR and AscP activities during progressive soil drought. The increase in MDA content by 16% in this cultivar was only observed after a 7-day drought period. The proline content in leaves of all wheat cultivars increased substantially during drought treatment. Thus, in wheat cultivars examined, different responses of the defense systems were mobilized to implement plant protection against water stress. The activities of antioxidant enzyme defense system depended on wheat cultivar, duration of drought, and the stage of leaf development.  相似文献   

10.
In the view of physiological role of H2O2, we investigated whether exogenous H2O2 application would affect short-term cold response of tomato and induce acclimation. Pretreatments were performed by immersing roots into 1 mM H2O2 solution for 1 h when transferring seedlings from seedling substrate to soil (acclimated group). Cold stress (3 °C for 16 h) caused significant reduction in relative water content (RWC) of control and non-acclimated (distilled water treated) groups when compared with unstressed plants. H2O2 promoted maintenance of relatively higher RWC under stress. Anthocyanin level in leaves of acclimated plants under cold stress was significantly higher than that of unstressed control and non-acclimated plants. Malondialdehyde (MDA) levels demonstrated low temperature induced oxidative damage to control and non-acclimated plants. MDA remained around unstressed conditions in acclimated plants, which demonstrate that H2O2 acclimation protected tissues against cold induced lipid peroxidation. H2O2 acclimation caused proline accumulation in roots under cold stress. Ascorbate peroxidase (APX) activity in roots of cold stressed and unstressed H2O2 acclimated plants increased when compared with control and non-acclimated plants, with highest increase in roots of acclimated plants under cold stress. CAT levels in roots of acclimated plants also increased, whereas levels remained unchanged in unstressed plants. Endogenous H2O2 levels significantly increased in roots of control and non-acclimated plants under cold stress. On the other hand, H2O2 content in roots of acclimated plants was significantly lower than control and non-acclimated plants under cold stress. The results presented here demonstrated that H2O2 significantly enhanced oxidative stress response by elevating the antioxidant status of tomato.  相似文献   

11.
The influence of long-term water deficit on photosynthesis, electron transport and carbon metabolism of sunflower leaves has been examined. Water deficit was imposed from flower bud formation up to the stage of full flowering in the field on two sunflower hybrids with different drought tolerance. CO2 assimilation and stomatal conductance of the intact leaves, determined at atmospheric CO2 and full sunlight (1500-2000 mol quanta m-2 s-1), decreased with water deficit. Maximum quantum efficiency of PSII (Fy/Fm) and relative quantum yield of PSII (II) determined under similar experimental conditions, did not change significantly in severely stressed leaves. The strong inhibition of the plateau region of the light response curve, determined at high CO2 (5%) in water-deficient sunflower leaves, indicates that photosynthesis is also limited by non-stomatal factors. The decreased slope and the plateau of the CO2 response curves show that the capacity of carboxylation and RuBP regeneration decreased in severely stressed intact leaves. Rubisco specific activity decreased in severely stressed leaves, but Rubisco content increased under prolonged drought. The increase of Rubisco content was significantly higher in leaves of the drought-tolerant sunflower hybrid indicating that a higher Rubisco content could be one factor in conferring better acclimation and higher drought tolerance.  相似文献   

12.
Seventeen clones of the ciguatera-causing dinoflagellate Gambierdiscus toxicus Adachi and Fukuyo were acclimated to the same environments over several months. Significant variance components were detected between non-acclimated and acclimated cultures for cell potencies, yields and reproduction rates. The resultant variance in acclimated potencies among clones was statistically significant (P < 0.0001), indicating that potency can be used for genetic comparisons. However, cell potency differences for a clone of G. toxicus in the acclimated vs. non-acclimated phases can exceed genetic differences between clones. This stresses the need for a rigorous acclimation process. Caribbean isolates of G. toxicus were inherently more toxic than isolates from other areas. One Caribbean clone yielded 55 × 10?4 mu (mouse units)·cell?1 whereas clones Bermuda, the Bahamas, and Florida ranged from only 1.8 × 10?4 mu·cell?1 to a maximum of 19.8 × 10?4 mu·cell?1. Toxicity decreased with increasing latitude (r =–0.819, P < 0.01), indicating that environmental differences probably influenced the potencies. A comparison of acclimated reproduction rates at four light intensities also indicated that genetic differences among clones existed. The resulting reproduction rate/light slopes overlapped, indicating that the clones may be adapted to specific light regimes.  相似文献   

13.
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond.  相似文献   

14.
15.
The effects of water deficit on relative water content (RWC), on the activity superoxide dismutase (SOD) and peroxidase (POX) from leaves of two drought-resistant barley strains (Hordeum vulgare L.) varieties (TOKAK-157/37 and 56000/MISC-233) and one sensitive (ERGINEL-90) were studied. In 21 day old seedlings, drought stress was initiated by withholding water and lasted for 12 days. Activity of SOD increased by the effect of drought treatments in the leaves of drought-resistant varieties TOKAK-157/37 and 56000/MISC-233 as compared to sensitive variety ERGINEL-90. The drought treatment resulted in a 418 % and 59 % increase in SOD activity in resistant varieties at the end of the 12th day of experimental period. However, an increase in activity of SOD was not accompanied by an increase in activity of POX in drought-resistant TOKAK-157/37 and 56000/MISC-233 except on the 6th day of drought treatment in 56000/MISC-233. In drought-sensitive variety, ERGINEL-90, POX activity did not change throughout drought period.  相似文献   

16.
Water is a main factor limiting plant growth. Integrative responses of leaf traits and whole plant growth to drought will provide implications to vegetation restoration. This study investigated the drought responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. with a focus on leaf morphology and physiology, seedling growth and biomass partitioning. Potted 1-year-old seedlings were subjected to four water supply regimes [75, 55, 35 and 15% field capacity (FC)], served as control, mild water stress, moderate water stress and severe water stress. Leaf morphological traits varied to reduce the distance of water transfer under water stress and leaflets were dispersed with drought. Net photosynthetic rate decreased significantly under water stress: stomatal closure was the dominant limitation at mild and moderate drought, while metabolic impairment was dominant at severe drought. The physiological impairment at severe drought could also be detected from the relative lower water use efficiency and non-photochemical quenching to moderate water stress. Total biomass of well-watered plants was more than twice that at moderate water deficit and nearly ten times that at severe water deficit. In summary, V. negundo var. heterophylla had adaptation mechanism to water deficit even in the most serious condition, but different strategies were adopted. Seedlings invested more photosynthate to roots at mild and moderate drought while more photosynthate to leaves at severe drought. A nearly stagnant seedling growth and a sharp decline of total biomass were the survival strategy at severe water stress, which was not favorable to vegetation restoration. Water supply above 15% FC is recommended for the seedlings to vegetation restoration.  相似文献   

17.
To produce ubiquitinated substrates for studies on ATP-dependent proteolysis, 125I-lysozyme was incubated in hemin-inhibited rabbit reticulocyte lysates. A portion of the labeled molecules became linked to ubiquitin in large covalent complexes. When these were partially purified and returned to uninhibited lysates containing ATP, the conjugated lysozyme molecules were degraded 10 times faster than free lysozyme. Purification of covalently modified lysozyme from hemin-inhibited lysates containing 125I-ubiquitin and 131I-lysozyme confirmed that both molecules were present in the complexes. The doubly labeled conjugates also permitted us to determine the fate of each molecule in uninhibited lysates. Besides degradation of lysozyme, there was a progressive release of intact lysozyme molecules from the complexes. This disassembly, which was the only fate of the complexes in the absence of ATP, proceeded through a series of smaller intermediates, several having molecular weights expected for ubiquitin-lysozyme conjugates, and eventually free lysozyme was regenerated. The behavior of labeled ubiquitin was similar, though not identical, to that of lysozyme. Even in lysates containing ATP ubiquitin emerged from the complex undegraded. Furthermore, ubiquitin was present in a greater number of species than was lysozyme. The demonstration that ubiquitin-lysozyme conjugates are rapidly degraded provides support for the hypothesis of Hershko, Rose, Ciechanover, and their colleagues that a key function of ubiquitin is to modify the proteolytic substrate. Further support for the hypothesis is presented in the following paper where we show that the conjugated lysozyme molecules are substrates for an ATP-dependent protease that does not degrade free lysozyme.  相似文献   

18.
The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated.  相似文献   

19.
Studies were undertaken to determine if there is an association between nonstomatally-mediated acclimation of photosynthesis to low water potential (w) and the maintenance of chloroplast volume during water stress. Spinach plants either kept well watered throughout their growth (non-acclimated), or subjected to water stress such that leaf w dropped to -1.5 megapascals (MPa) and then were rewatered (acclimated) were subjected to drought episodes. During these stress periods, photosynthesis was maintained to a greater extent in acclimated plants as compared to non-acclimated plants at w below -1 MPa.Estimates of internal leaf [CO2] suggested that photosynthetic acclimation to low w was not primarily due to altered stomatal response. As w dropped from initial values, a decline in steady state levels of ribulose 1,5-bisphosphate (RuBP) occurred in both non-acclimated and acclimated plants. RuBP decline was less severe in acclimated plants.Low w effects on chloroplast volume in non-acclimated and acclimated plants were estimated by measuring the volume of intact chloroplasts isolated from plants in solutions which were made isotonic to declining leaf osmotic potential during the drought episodes. Chloroplast volume was maintained to a greater extent at low w in acclimated, as compared with non-acclimated plants. Although substantial osmotic adjustment occurred in both non-acclimated and acclimated plants, the extent of osmotic adjustment was the same. These data were interpreted as supporting the hypothesis that cellular-level acclimation to low w is associated with chloroplast volume maintenance, and this physiological acclimation is correlated with enhanced photosynthetic capacity of the leaf at low w.Abbreviations [CO2]i internal leaf CO2 concentration - s osmotic potential - RWC relative water content - RuBP ribulose 1,5-bisphosphate - w water potential  相似文献   

20.
Foliar carbon isotope discrimination (Δ) of C3 plants decreases in water‐deficit situations as discrimination by the photosynthetic primary carboxylation reaction decreases. This diminished Δ in leaves under water deficit can be used as a tracer to study whole plant carbon allocation patterns. Carbon isotope composition (δ13C value) of leaf hot water extracts or leaf tissue sap represents a short‐term integral of leaf carbon isotope discrimination and thus represents the δ13C value of source carbon that may be distributed within a plant in water‐deficit situations. By plotting the δ13C values of source carbon against the δ13C values of sink tissues, such as roots or stems, it is possible to assess carbon allocation to and incorporation into sink organs in relation to already present biomass. This natural abundance labelling method has been tested in three independent experiments, a one‐year field study with the fruit tree species Ziziphus mauritiana and peach (Prunus persica), a medium‐term drought stress experiment with Ziziphus rotundifolia trees in the glasshouse, and a short‐term drought stress experiment with soybean (Glycine max). The data show that the natural abundance labelling method can be applied to qualitatively assess carbon allocation in drought‐stressed plants. Although it is not possible to estimate exact fluxes of assimilated carbon during water deficit the method represents an easy to use tool to study integrated plant adaptations to drought stress. In addition, it is a less laborious method that can be applied in field studies as well as in controlled experiments, with plants from any developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号