首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface changes during muscle differentiation in vitro, were investigated using the non permeant probe 2,4,6-trinitrobenzene sulphonate (TNBS) in order to label the aminogroups of proteins exposed on the outer surface of the plasma membrane. Surface proteins of chick myotubes and 'mature' unfused myoblasts (myoblasts grown for 7 days in a calcium-depleted medium) were found to bind an equal amount of probe, which is twice the amount bound by surface proteins in 'immature' myoblasts (1--2 days of culture) and fibroblasts. This indicates that a 'remodelling' of the plasma membrane outer surface takes place in the course of muscle cell differentiation even in the absence of cell fusion. Moreover, the total amount of TNBS bound to the surface was 4--5 times greater in myotubes than in unfused myoblasts. This appears to result from the surface expansion which occurs in myotubes during the development of the T tubule system.  相似文献   

2.
Slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of 9-day-old quail embryos were cultured in vitro without neurons for 1 to 12 weeks. Several differences could be observed between ALD- and PLD-derived cells. PLD cultures proliferated less rapidly than ALD cultures. ALD-derived muscle fibres exhibited wide Z lines, numerous mitochondria, and a poorly developed sarcotubular system, while PLD-derived muscle fibres exhibited narrow Z lines, few mitochondria, and an abundant sarcotubular system. Staining for myofibrillar ATPase revealed that all well-differentiated ALD-derived muscle fibres were of the beta' type, while PLD-derived fibres were of beta and beta R types. These results show that myoblasts from slow and fast muscle rudiments can express in vitro some of the characteristic features of slow and fast muscle fibres, independently of motor innervation.  相似文献   

3.
Adult muscle stem cells, satellite cells (SCs), endow skeletal muscle with tremendous regenerative capacity. Upon injury, SCs activate, proliferate, and migrate as myoblasts to the injury site where they become myocytes that fuse to form new muscle. How migration is regulated, though, remains largely unknown. Additionally, how migration and fusion, which both require dynamic rearrangement of the cytoskeleton, might be related is not well understood. c-MET, a receptor tyrosine kinase, is required for myogenic precursor cell migration into the limb for muscle development during embryogenesis. Using a genetic system to eliminate c-MET function specifically in adult mouse SCs, we found that c-MET was required for muscle regeneration in response to acute muscle injury. c-MET mutant myoblasts were defective in lamellipodia formation, had shorter ranges of migration, and migrated slower compared to control myoblasts. Surprisingly, c-MET was also required for efficient myocyte fusion, implicating c-MET in dual functions of regulating myoblast migration and myocyte fusion.  相似文献   

4.
Myoblast fusion is essential to skeletal muscle development and repair. We have demonstrated previously that human myoblasts hyperpolarize, before fusion, through the sequential expression of two K+ channels: an ether-à-go-go and an inward rectifier. This hyperpolarization is a prerequisite for fusion, as it sets the resting membrane potential in a range at which Ca2+ can enter myoblasts and thereby trigger fusion via a window current through alpha1H T channels.  相似文献   

5.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

6.
Short-term analysis of myogenesis in respiration-deficient myoblasts demonstrated that respiratory chain dysfunction impairs muscle differentiation. To investigate long-term consequences of a deficiency in oxidative phosphorylation on myogenesis, we quantitated myoblast fusion and expression of sarcomeric myosin in respiration-deficient myogenic cybrids. We produced viable myoblasts harboring exclusively mtDNA with large-scale deletions by treating wild-type myoblasts with rhodamine 6G and fusing them with cytoplasts homoplasmic for two different mutated mtDNAs. Recovery of growth in transmitochondrial myoblasts demonstrated that respiratory chain function is not required for recovery of rhodamine 6G-treated cells. Both transmitochondrial respiration-deficient cultures exhibited impaired myoblast fusion. Expression of sarcomeric myosin was also delayed in deficient myoblasts. However, 4 weeks after induction of differentiation, one cell line was able to quantitatively recover its capacity to form postmitotic muscle cells. This indicates that while oxidative phosphorylation is an important source of ATP for muscle development, myoblast differentiation can be supported entirely by glycolysis.  相似文献   

7.
Primary skeletal muscle myoblasts have a limited proliferative capacity in cell culture and cease to proliferate after several passages. We examined the effects of several oncogenes on the immortalization and differentiation of primary cultures of rat skeletal muscle myoblasts. Retroviruses containing a SV40 large T antigen (LT) gene very efficiently immortalize myogenic cells. The immortalized cell lines retain a very high differentiation capacity and form, in the appropriate culture conditions, a very dense network of muscle fibers. As in primary culture, cell fusion is associated with the synthesis of large amounts of muscle-specific proteins. However, unlike normal myoblasts (and previously established myogenic cell lines), nuclei in the multinucleated fibers of SV40-immortalized cells synthesize DNA and enter mitosis. Thus, withdrawal from DNA synthesis is not obligatory for cell fusion and biochemical differentiation. Using a retrovirus coding for a temperature-sensitive SV40 LT, myogenic cell lines were produced in which the SV40 LT could be inactivated by a shift from 33 degrees C to 39 degrees C. The inactivation of LT induced massive cell fusion and synthesis of muscle proteins. The nuclei in those fibers did not synthesize DNA, nor did they undergo mitosis. This approach enabled the reproducible establishment of myogenic cell lines from very small populations of myoblasts or single primary myogenic clones. Activated p53 also readily immortalized cells in primary muscle cultures, however the cells of eight out of the nine cell lines isolated had a fibroblastic morphology and could not be induced to form multinucleated fibers.  相似文献   

8.
We previously found that L6 myoblasts and skeletal muscle isolated from developing rats express the platelet-derived growth factor (PDGF) beta-receptor gene (Jin, P., Rahm, M., Claesson-Welsh, L., Heldin, C.-H., and Sejersen, T. (1990) J. Cell Biol. 110, 1665-1672). We now report that recombinant human PDGF-BB is a mitogen for L6 myoblasts and also a potent inhibitor of myogenic differentiation. Treatment of L6J1 myoblasts with PDGF-BB increased the rate of DNA synthesis and stimulated cell proliferation. In differentiation medium (Dulbecco's modified Eagle's medium/0.5% fetal calf serum or Dulbecco's modified Eagle's medium/insulin), PDGF-BB prevented fusion of confluent myoblasts and suppressed biochemical differentiation in L6J1 cells. Inhibition of myoblast differentiation was, however, reversible. Withdrawal of PDGF-BB from the medium allowed myoblast fusion to occur. Northern blot hybridization showed that the PDGF beta-receptor mRNA was down-regulated to an undetectable level when confluent cultures of L6J1 myoblasts in growth medium (Dulbecco's modified Eagle's medium/5% fetal calf serum) were shifted to differentiation medium. Receptor binding assays further indicated that binding of PDGF-BB to its receptors on L6J1 myoblasts declined rapidly before creatine kinase activity rose. Our results provide the first demonstration that PDGF-BB is a potent regulator of myogenesis of L6 rat myoblasts and suggest that it may regulate muscle differentiation in vivo.  相似文献   

9.
The influence of triiodothyronine (T3) on avian myoblast proliferation and differentiation was studied in secondary cultures using plating densities of 2500 and 7000 cells/cm2. Culture media were depleted of T3 (control myoblasts) and increasing amounts were then added to concentrations of 0.6, 3 and 15 nM T3 (treated myoblasts). Independent of the cell density, T3 induced a dose-related decrease in myoblast proliferation measured by cell number, doubling time and 3H-thymidine incorporation. However, with the lower plating density, this influence was delayed, occurring only after the third day of culture for 0.6 nM T3-treated myoblasts and simultaneous with the onset of myosin heavy chain accumulation. Moreover, when myoblasts were exposed to BrdU for 48 h, the T3 growth inhibitory effect disappeared, thus showing that this effect was clearly linked to differentiation. In addition, we have shown that T3 induced an early fusion of myoblasts: 65% of the maximal value of the fusion index was reached on day 3 in the T3-treated cells in comparison to 25% in the control myoblasts. This hormone also enhanced accumulation of muscle-specific proteins (connectin, acetylcholine receptors, myosin heavy chain), tested by cytoimmunofluorescence, ELISA, binding experiments and Western blot. All these results show that T3 increased myoblast differentiation through a pathway including myoblast withdrawal from the cell cycle. The influence of T3 could partly explain its previously reported positive effect on the number of muscle fibers.  相似文献   

10.
11.
By using a lanthanum-staining technique which enhances the visualization of the plasma membrane and its derivatives we have studied the formation of the T system in rat muscle cells differentiating in vitro. We have found that: (1) T-system formation normally occurs after myoblast fusion and is especially extensive in mature myotubes; myoblasts grown in calcium-deficient medium to prevent fusion show increased number of sarcolemmal caveolae but rare, short T tubules. (2) T-system formation in vitro differs from that displayed by rat muscle cells in vivo in that it precedes and is independent of junctional SR differentiation; the uncoordinated development of T tubules and junctional SR in vitro leads to the formation of ‘inverted’ triads and labyrinthine T-system networks. (3) Coated vesicles are frequently found either free in the cytoplasm or associated with growing T tubules in rat muscle cells differentiating in vitro. A role of coated vesicles in T-system formation is proposed.  相似文献   

12.
We have created new mouse muscle cell lines of an immortalized type, expressing normal differentiation at the myotube stage: sarcomeric organization, functional excitation-contraction coupling, and triadic differentiation. The DNA immortalizing recombinant utilizes a deletion mutant of the regulatory region of the human vimentin promoter controlling the expression of a SV40 thermosensitive large T antigen, in which the small t sequence has been deleted. Skeletal mouse replicative myoblasts synthesized predominantly vimentin. After myoblast fusion the vimentin gene is strongly repressed in multinucleated syncytia. Furthermore, the normal activity of the vimentin promoter in myoblasts is increased in the large T antigen-expressing cells. We observed that continuous and rapid division of myoblasts occurs at permissive temperature, suggesting that immortalization is achieved even though the small t antigen is absent. When fusion is induced by changing media conditions, large T antigen expression is totally repressed by the vimentin promoter. When the temperature is elevated to 39 degrees C, the preexisting large T antigen is inactivated. The resulting myotubes from normal mouse differentiate totally normally as indicated by their morphology, ultrastructure, and electrophysiological properties. Mutant (muscular dysgenesis) immortalized cells express the same properties as mutant primary counterparts with no contraction, no slow Ca2+ current, and no triadic differentiation. These immortalized cell lines are potentially very useful for further pharmacology, transplantation, and cell biology studies. The vimentin promoter control of immortalizing recombinant DNA can be used for any mammalian normal and mutant muscle cell lines.  相似文献   

13.
Intercellular fusion among myoblasts is required for the generation of multinucleated muscle fibers during skeletal muscle development. Recent studies in Drosophila have shed light on the molecular mechanisms that underlie this process, and a signaling pathway that relays fusion signals from the cell membrane to the cytoskeleton has emerged. In this article, we review these recent advances and discuss how Drosophila offers a powerful model system to study myoblast fusion in vivo.  相似文献   

14.
The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.  相似文献   

15.
Proliferation and fusion of myoblasts are needed for the generation and repair of multinucleated skeletal muscle fibers in vivo. Studies of myocyte differentiation, cell fusion, and muscle repair are limited by an appropriate in vitro muscle cell culture system. We developed a novel cell culture technique [two-dimensional muscle syncytia (2DMS) technique] that results in formation of myotubes, organized in parallel much like the arrangement in muscle tissue. This technique is based on UV lithography–produced micro-patterned glass on which conventionally cultured C2C12 myoblasts proliferate, align, and fuse to neatly arranged contractile myotubes in parallel arrays. Combining this technique with fluorescent microscopy, we observed alignment of actin filament bundles and a perinuclear distribution of glucose transporter 4 after myotube formation. Newly formed myotubes contained adjacently located MyoD-positive and MyoD-negative nuclei, suggesting fusion of MyoD-positive and MyoD-negative cells. In comparison, the closely related myogenic factor Myf5 did not exhibit this pattern of distribution. Furthermore, cytoplasmic patches of MyoD colocalized with bundles of filamentous actin near myotube nuclei. At later stages of differentiation, all nuclei in the myotubes were MyoD negative. The 2DMS system is thus a useful tool for studies on muscle alignment, differentiation, fusion, and subcellular protein localization. (J Histochem Cytochem 56:881–892, 2008)  相似文献   

16.
The reversible arrest of myoblast differentiation by ethidium bromide (EB) has been used to examine the nature of the transition from the proliferative state to terminal differentiation resulting in fusion into muscle fibers. If EB is introduced at the time that myoblasts are shifted to medium that induces fusion, all apparent cytodifferentiation is suspended. When such EB arrested myoblasts are released from EB inhibition they fuse without reentering the cell cycle. If EB arrested myoblasts are released into proliferation promoting medium rather than medium that induces fusion they neither fuse nor proliferate. In this case they remain quiescent in the proliferating medium for an extended period, however, if these myoblasts are subsequently shifted to medium that induces fusion, they fuse without reentering the cell cycle. Apparently the myoblasts have become postmitotic and competent to fuse into muscle fibers during their initial exposure to fusion inducing medium, even though cytodifferentiation has been blocked. Exposure of these postmitotic fusion competent myoblasts to proliferation promoting medium does not stimulate them to reenter the cell cycle but does prevent fusion into muscle fibers. These results are most consistent with a quantal division model of myoblast differentiation rather than a gradual transition from the proliferative state to a state in which fusion occurs.  相似文献   

17.
The reversible arrest of myoblast differentiation by ethidium bromide (EB) has been used to examine the nature of the transition from the proliferative state to terminal differentiation resulting in fusion into muscle fibers. If EB is introduced at the time that myoblasts are shifted to medium that induces fusion, all apparent cytodifferentiation is suspended. When such EB arrested myoblasts are released from EB inhibition they fuse without reentering the cell cycle. If EB arrested myoblasts are released into proliferation promoting medium rather than medium that induces fusion they neither fuse nor proliferate. In this case they remain quiescent in the proliferating medium for an extended period, however, if these myoblasts are subsequently shifted to medium that induces fusion, they fuse without reentering the cell cycle. Apparently the myoblasts have become postmitotic and competent to fuse into muscle fibers during their initial exposure to fusion inducing medium, even though cytodifferentiation has been blocked. Exposure of these postmitotic fusion competent myoblasts to proliferation promoting medium does not stimulate them to reenter the cell cycle but does prevent fusion into muscle fibers. These results are most consistent with a quantal division model of myoblast differentiation rather than a gradual transition from the proliferative state to a state in which fusion occurs.  相似文献   

18.
Follistatin (FST) can inhibit the expression of myostatin, which is a predominant inhibitor of muscle development. The potential application of myostatin-based technology has been prompted in different ways in agriculture. We previously constructed an expression vector of duck FST and isolated the FST fusion protein. After the protein was purified and refolded, it was added to the medium of duck myoblasts cultured in vitro. The results show that the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide value of the myoblasts in the duck FST treatment group is higher than that in the control group, which indicates that the duck FST fusion protein exhibits the biological activities that can accelerate myoblast proliferation. To further investigate the roles of duck FST on muscle development, we injected the protein into the duck muscle tissues in vivo. The results show that both the duck muscle fiber cross-sectional area and the satellite cell activation frequency are influenced more in the FST treatment group than they are in the control group. In addition to these phenomena, expression of MyoD and Myf5 were increased, and the expression of myostatin was decreased. Together, these results suggest the potential for using duck FST fusion protein to inhibit myostatin activity and subsequently to enhance muscle growth in vivo. The mechanism by which FST regulates muscle development in the duck is similar to that in mammals and fishes.  相似文献   

19.
The induction of the enzyme creatine phosphokinase (CPK) in cultures of chick breast muscle myoblasts has been distinguished from the process of fusion of myoblasts resulting in the formation of multinucleated myotubes. Primary cultures of myoblasts grown in the presence of phospholipase C, BUdR or EGTA, all of which prevent cell fusion, contain amounts of CPK similar to the level in untreated cultures. Both the brain and muscle isozymes are present in all cultures. We conclude that the induction of CPK is not dependent upon the formation of multinucleated myotubes.  相似文献   

20.
Myoblast fusion is critical for the formation, growth, and maintenance of skeletal muscle. The initial formation of nascent myotubes requires myoblast-myoblast fusion, but further growth involves myoblast-myotube fusion. We demonstrate that the mannose receptor (MR), a type I transmembrane protein, is required for myoblast-myotube fusion. Mannose receptor (MR)-null myotubes were small in size and contained a decreased myonuclear number both in vitro and in vivo. We hypothesized that this defect may arise from a possible role of MR in cell migration. Time-lapse microscopy revealed that MR-null myoblasts migrated with decreased velocity during myotube growth and were unable to migrate in a directed manner up a chemoattractant gradient. Furthermore, collagen uptake was impaired in MR-null myoblasts, suggesting a role in extracellular matrix remodeling during cell motility. These data identify a novel function for MR during skeletal muscle growth and suggest that myoblast motility may be a key aspect of regulating myotube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号