首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inaka K  Kanaya E  Kikuchi M  Miki K 《Proteins》2001,43(4):413-419
The three-dimensional structure of a mutant human lysozyme, W64CC65A, in which a non-native disulfide bond Cys64--Cys81 is substituted for the Cys65--Cys81 of the wild type protein by replacing Trp64 and Cys65 with Cys and Ala, respectively, was determined by X-ray crystallography and refined to an R-value of 0.181, using 33,187 reflections at 1.87-A resolution. The refined model of the W64CC65A protein consisted of four molecules, which were related by two noncrystallographic twofold axes and a translation vector. Although no specific structural differences could be observed among these four molecules, the overall B-factors of each molecule were quite different. The overall structure of W64CC65A, especially in the alpha-helical domain, was found to be quite similar to that of the wild type protein. Moreover, the side-chain conformation of the newly formed Cys64--Cys81 bond was quite similar to that of the Cys65--Cys81 bond of the wild-type protein. However, in the beta-sheet domain, the main-chain atoms of the loop region from positions 66-75 could not be determined, and significant structural changes due to the formation of the non-native disulfide bond could be observed. From these results, it is clear that the loop region of the mutant protein does not fold with the specific folding as observed in the wild-type protein.  相似文献   

2.
乳酸抗性酵母的筛选及其生长特性的研究   总被引:2,自引:0,他引:2  
以酿酒酵母 (saccharomycesceevisiae)单倍体YNN -2 7(αtep ura )为亲株 ,在含有 4 %乳酸的梯度平板上直接进行紫外线诱变处理 ,筛选到突变株YNN -2 7-2 4。通过对该突变株乳酸抗性产生原因分析、在含有不同浓度的乳酸和潮霉素B(hygromycinB)的YPDL和YPDLH培养基中的重复特性的研究发现 ,该突变株对乳酸和潮霉素B产生的抗性 ,不是因对环境条件的适应而产生 ,而是由基因突变所引起。与突变株YNN2 7-2 4相比 ,乳酸对亲株生长的影响在于延长了其生长的延迟期 ,而其生长速率没有发生改变。用Mini-photo 51 8测定供试菌株在生长过程中的吸光度 ( 660nm)以研究酵母菌的生长特性 ,是一种行之有效的方法 ,具有较高的灵敏度和较好的再现性。  相似文献   

3.
Fusobacterium nucleatum is known to adhere to human polymorphonuclear neutrophils (PMNs) and cause them to aggregate. In this study, we isolated a spontaneously occurring aggregation defective (AGG(-)) mutant and this mutant will be used for future study of the interactions between this bacterium and human PMN. Genomic DNA fingerprinting by random-primed polymerase chain reaction method revealed a difference between the parent strain and the AGG(-) mutant. This mutant also showed an altered phenotype in both microbicidal and phagocytic assays, suggesting that the bacterial factor involved in the aggregation may also be very important for the phagocytosis and, subsequently, the killing by human PMNs. Further study of this mutant may help to clarify the molecular mechanisms of the interaction between this pathogen and human PMNs.  相似文献   

4.
In order to investigate the response of dynamic structure to removal of a disulfide bond, the dynamic structure of human lysozyme has been compared to its C77A/C95A mutant. The dynamic structures of the wild type and mutant are determined by normal mode refinement of 1.5-A-resolution X-ray data. The C77A/C95A mutant shows an increase in apparent fluctuations at most residues. However, most of the change originates from an increase in the external fluctuations, reflecting the effect of the mutation on the quality of crystals. The effects of disulfide bond removal on the internal fluctuations are almost exclusively limited to the mutation site at residue 77. No significant change in the correlation of the internal fluctuations is found in either the overall or local dynamics. This indicates that the disulfide bond does not have any substantial role to play in the dynamic structure. A comparison of the wild-type and mutant coordinates suggests that the disulfide bond does not prevent the 2 domains from parting from each other. Instead, the structural changes are characteristic of a cavity-creating mutation, where atoms surrounding the mutation site move cooperatively toward the space created by the smaller alanine side chain. Although this produces tighter packing, more than half of the cavity volume remains unoccupied, thus destabilizing the native state.  相似文献   

5.
Killer toxin K1 of Saccharomyces cerevisiae kills sensitive cells of the same species by disturbing the ion gradient across the plasma membrane after binding to the receptor at cell wall beta-1,6-glucan. Killer protein K2 is assumed to act by a similar mechanism. To identify the putative plasma membrane receptors for both toxins we mutagenized three sensitive S. cerevisiae strains and searched for clones with killer-resistant spheroplasts. The well diffusion assay identified three phenotypically different groups of clones: clones resistant simultaneously to both toxins, clones with lowered sensitivity to only K1 toxin and those with strongly lowered sensitivity to K2 and partially lowered sensitivity to K1 toxin. These phenotypes are controlled by recessive mutations that belong to at least four different complementation groups. This indicates certain differences at the level of interaction of K1 and K2 toxin with sensitive cells.  相似文献   

6.
Alberghina L  Cirulli C 《Proteomics》2010,10(24):4337-4341
In this note we discuss how, by using budding yeast as model organism (as has been done in the past for biochemical, genetics and genomic studies), the integration of "omics" sciences and more specifically of proteomics with systems biology offers a very profitable approach to elucidating regulatory circuits of complex biological functions.  相似文献   

7.
Yeast colonies isolated from vineyard and cellar substrates were analysed in the present study. Yeast species assessment was carried out by amplification and digestion of a region of the ribosomal RNA gene repeat unit. Saccharomyces strains were also characterised using mitochondrial DNA restriction analysis. Oxidative basidiomycetous yeasts without enological potential were predominant in the vineyard environment. Yeasts associated with grape skin depend on grape variety, vintage and degree of grape maturation. These species from grape surface constituted the predominant microbiota in must and they developed during the first stages of the process. Yeasts colonies were also isolated and identified from the walls of a fermentation vat some days before the harvest. Contrary to what was expected, Saccharomyces cerevisiae was not the major species isolated as Candida sorbosa represented 76% of the species isolated. Saccharomyces strains isolated from the fermentation vat had been previously isolated in wine fermentations in this cellar. Therefore, these strains should be considered as constant residents of this winery.  相似文献   

8.
Mutants resistant to the amino acid analogues dl-thiaisoleucine, dl-4-azaleucine, 5,5,5-trifluoro-dl-leucine and l-O-methylthreonine, were isolated from Saccharomyces cerevisiae wine yeast strains. The fermentative production of secondary metabolites by the mutants was tested in grape must. Higher alcohols, acetaldehyde and acetic acid concentration varied depending on strain and analogue. Most of the mutants produced increased amounts of amyl alcohol. A remarkable variability in the level of n-propanol, isobutanol, acetaldehyde and acetic acid was observed. In practical application, the use of mutants resistant to amino acid analogues can improve the quality of wines by reducing or increasing the presence of some secondary compounds.  相似文献   

9.
HL9 is a nonapeptide fragment of human lysozyme which has been shown to have anti-HIV-1 activity in nanomolar concentration. This study aims to explain this inhibitory activity by using molecular dynamics (MD) simulation, focusing on the ectodomain of gp41, the envelope glycoprotein of HIV-1 crucial to membrane fusion. It was found that in HL9, two Trp residues separated by two others occupy the conserved hydrophobic pocket on gp41 and thus inhibit fusion in dominant-negative manner. Detailed HL9-gp41 binding interactions and free energies of binding were obtained through MD simulation and solvated interaction energies (SIE) calculation, giving a binding free energy of −8.25 kcal/mol which is in close agreement with the experimental value of −9.96 kcal/mol. Since C-helical region (C34) of gp41 also has two Trp residues separated by two others, this arrangement may be generalised and used to scan peptide library and to find those having similar manner of inhibition.  相似文献   

10.
【目的】通过构建的人工耐酸系统,筛选耐受低pH值、乳酸及琥珀酸的菌株。【方法】构建人工耐酸系统长期驯化菌株,利用不同p H的酸性平板进行筛选,从环境中筛选出一株对低p H值、高浓度乳酸以及琥珀酸有很好耐受性的菌株。通过形态学特征、生理生化特征研究,并结合18S rDNA基因序列分析及分子系统发育树的构建结果,确定菌株的种类。【结果】经过酸性人工系统的长期驯化,筛选分离出一株耐受低pH值、高浓度乳酸以及琥珀酸的菌株WJ-2,经鉴定该菌株为酿酒酵母(Saccharomyces cerevisiae),其最适生长温度为30°C。酸性平板实验显示该菌株能够耐受pH2.5的酸性环境,同时对9%的乳酸及8%的琥珀酸也有很好的耐受性。另外,耐酸菌株WJ-2在pH 2.5、9%乳酸和8%琥珀酸的培养环境中仍能保持相对中性的细胞内pH值。【结论】通过构建人工酸性系统,成功筛选出一株对低pH值、高浓度乳酸以及琥珀酸具有耐受性的菌株——酿酒酵母菌WJ-2,该方法可为筛选具有特定耐受能力菌株提供一个新思路。  相似文献   

11.
The production of hydrogen sulfide (H2S) during fermentation is a common and significant problem in the global wine industry as it imparts undesirable off-flavors at low concentrations. The yeast Saccharomyces cerevisiae plays a crucial role in the production of volatile sulfur compounds in wine. In this respect, H2S is a necessary intermediate in the assimilation of sulfur by yeast through the sulfate reduction sequence with the key enzyme being sulfite reductase. In this study, we used a classical mutagenesis method to develop and isolate a series of strains, derived from a commercial diploid wine yeast (PDM), which showed a drastic reduction in H2S production in both synthetic and grape juice fermentations. Specific mutations in the MET10 and MET5 genes, which encode the catalytic α- and β-subunits of the sulfite reductase enzyme, respectively, were identified in six of the isolated strains. Fermentations with these strains indicated that, in comparison with the parent strain, H2S production was reduced by 50–99%, depending on the strain. Further analysis of the wines made with the selected strains indicated that basic chemical parameters were similar to the parent strain except for total sulfite production, which was much higher in some of the mutant strains.  相似文献   

12.
Summary The fermentative production of amyloglucosidase (AMG) by differentAspergillus species simultaneously yields transglucosidase (TG), which is undersirable in the conversion of starch to dextrose, as it catalyses the reversion of dextrose and maltose to maltosaccharides, in turn providing disproportionately lower yields of dextrose (DX). To overcome this problem, using UV-irradiation, a novel mutant (ND-1-283) has been isolated fromAspergillus awamori, which has lost the ability to produce TG and which secretes 45% more AMG than its parent strain, giving the mutant a dual operational advantage. The inability of this mutant to produce TG was demonstrated by thin layer chromatography (TLC) of starch hydrolysate; this was substantiated by obtaining 96.0% DX (w/w) at the end of saccharification.  相似文献   

13.
Human lysozyme has a structure similar to that of hen lysozyme and differs in amino acid sequence by 51 out of 129 residues with one insertion at the position between 47 and 48 in hen lysozyme. The backbone dynamics of free or (NAG)3-bound human lysozyme has been determined by measurements of 15N nuclear relaxation. The relaxation data were analyzed using the Lipari-Szabo formalism and were compared with those of hen lysozyme, which was already reported (Mine S et al.. 1999, J Mol Biol 286:1547-1565). In this paper, it was found that the backbone dynamics of free human and hen lysozymes showed very similar behavior except for some residues, indicating that the difference in amino acid sequence did not affect the behavior of entire backbone dynamics, but the folded pattern was the major determinant of the internal motion of lysozymes. On the other hand, it was also found that the number of residues in (NAG)3-bound human and hen lysozymes showed an increase or decrease in the order parameters at or near active sites on the binding of (NAG)3, indicating the increase in picosecond to nanosecond. These results suggested that the immobilization of residues upon binding (NAG)3 resulted in an entropy penalty and that this penalty was compensated by mobilizing other residues. However, compared with the internal motions between both ligand-bound human and hen lysozymes, differences in dynamic behavior between them were found at substrate binding sites, reflecting a subtle difference in the substrate-binding mode or efficiency of activity between them.  相似文献   

14.
A method is described to rapidly select and classify many independent near-UV irradiation-resistant Escherichia coli mutants, which include tRNA modification and RNA synthesis control mutants. One class of these mutants was found to be simultaneously deficient in thiamine biosynthesis and in the ability to modify uridine in tRNA to 4-thiouridine, known to be the target for near-UV irradiation. These mutants were found to be unable to make thiazole, a thiamine precursor. The addition of thiazole restores the thiamine deficiency but does not render the cells near-UV irradiation sensitive. In vitro studies on one of these mutants indicated a deficiency in protein factor C (nuvC), required for the 4-thiouridine modification of tRNA. In P1 transduction, the thiazole marker cotransduced with the histidine marker, which places the thiazole marker between 42 and 46 min on the E. coli chromosome map. Both thiamine production and 4-thiouridine production were resumed by 87% of the spontaneous reversions, suggesting a single-point mutation. Our results indicate that we have isolated nuvC mutants and that the nuvC polypeptide is involved in two functions, tRNA modification and thiazole biosynthesis.  相似文献   

15.
A barley (Hordeum vulgare L.) mutant (cool) with leaf transpiration unaffected by the application of 1 mM abscisic acid (ABA) was isolated from the population of M2 seedlings using thermography (electronic visualization, and quantitation of the temperature profiles on the surface of the leaves). Stomata of the mutant plants were insensitive to exogenously applied ABA, darkness, and such desiccation treatments as leaf excision and drought stress. The evaporative cooling of the leaves of the cool barley was always higher than that of the wild-type barley, even without ABA application, indicating that the diffusive resistance of the mutant leaves to water loss was always lower. Guard-cell morphology and stomatal density as well as ABA level and metabolism were seemingly unaltered in the mutant plants. In addition, gibberellin-induced -amylase secretion and precocious embryo germination in the mutant barley was inhibited by ABA to the same extent as in the wild-type barley.Abbreviations ABA (±) cis-trans abscisic acid - GA gibberellin  相似文献   

16.
Alanine scanning mutagenesis of the HyHEL-10 paratope of the HyHEL-10/HEWL complex demonstrates that the energetically important side chains (hot spots) of both partners are in contact. A plot of deltadeltaG(HyHEL-10_mutant) vs. deltadeltaG(HEWL_mutant) for the five of six interacting side-chain hydrogen bonds is linear (Slope = 1). Only 3 of the 13 residues in the HEWL epitope contribute >4 kcal/mol to the free energy of formation of the complex when replaced by alanine, but 6 of the 12 HyHEL-10 paratope amino acids do. Double mutant cycle analysis of the single crystallographically identified salt bridge, D32H/K97, shows that there is a significant energetic penalty when either partner is replaced with a neutral side-chain amino acid, but the D32(H)N/K97M complex is as stable as the WT. The role of the disproportionately high number of Tyr residues in the CDR was evaluated by comparing the deltadeltaG values of the Tyr --> Phe vs. the corresponding Tyr --> Ala mutations. The nonpolar contacts in the light chain contribute only about one-half of the total deltadeltaG observed for the Tyr --> Ala mutation, while they are significantly more important in the heavy chain. Replacement of the N31L/K96 hydrogen bond with a salt bridge, N31D(L)/K96, destabilizes the complex by 1.4 kcal/mol. The free energy of interaction, deltadeltaG(int), obtained from double mutant cycle analysis showed that deltadeltaG(int) for any complex for which the HEWL residue probed is a major immunodeterminant is very close to the loss of free energy observed for the HyHEL-10 single mutant. Error propagation analysis of double mutant cycles shows that data of atypically high precision are required to use this method meaningfully, except where large deltadeltaG values are analyzed.  相似文献   

17.
Products of ras genes are synthesized as precursors in the cytosol and transported to the plasma membrane by a process which involves posttraslational modification by fatty acid. In this paper, we present evidence for the occurrence in the cytosol of an intermediate modification of ras proteins prior to the fatty acid acylation. The modification is detected by a slight shift in the mobility of the protein on SDS polyacrylamide gel. The fatty acid acylation does not contribute to this mobility shift. This modification is affected by the dprl mutation which has recently been shown to affect the processing of yeast RAS proteins. To further characterize the nature of the modification event, we have cloned DPR1 gene from the DNA of Saccharomyces cerevisiae. The gene is actively transcribed in yeast cells producing mRNA of approximately 1.6 kb. Genes related to the DRP1 appear to be present in a distantly related yeast, Schizosaccharomyces pombe as well as in guinea pig and human cells.  相似文献   

18.
Mutant human lysozymes (HLZ) lacking two disulfide bonds were constructed to study the importance of each disulfide bond on oxidative refolding. To avoid destabilization, a calcium-binding site was introduced. Five of the six species of two-disulfide mutants could be obtained with enzymatic activity. Based on the information obtained from refolding and unfolding experiments, the order of importance in oxidative refolding was found to be as follows: SS2(Cys30-Cys116) > SS1(Cys6-Cys128) SS3(Cys65-Cys81) > SS4(Cys77-Cys95). Without SS2, these mutants refolded with low efficiency or did not refold at all. The bond SS2 is located in the interface of B-and D-helices, and a small hydrophobic cluster is formed near SS2. This cluster may play an important role in the folding process and stabilization, and SS2 may act as a stabilizer through its polypeptide linkage. The bond SS2 is the most important disulfide bond for oxidative folding of lysozymes.  相似文献   

19.
The function of the positively charged C-terminal region of mitochondrially encoded subunit 8 of yeast mitochondrial ATP synthase was investigated using derivatives truncated at each of the 3 positively charged residues (Arg37, Arg42 and Lys47). Each construct, allotopically expressed in the nucleus, was tested for its ability to import and assemble functionally into ATP synthase in yeast cells unable to synthesize mitochondrial subunit 8. The efficiency of import of each construct into isolated wild-type yeast mitochondria was also determined. One construct truncated at the penultimate residue of subunit 8 (Lys47) functions in vivo and shows efficient import in vitro. Thus subunit 8 can function with only two positively charged residues. The remainder of the subunit 8 variants failed to rescue in vivo. Since they all show greatly reduced or undetectable import in vitro, presumably because of the increased hydrophobic character of the subunit 8 moiety in the chimaeric precursors, the status of these variants as regards assembly and function is not clear.  相似文献   

20.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号