首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway   总被引:13,自引:8,他引:5  
Exoenzyme S is an extracellular ADP-ribosyltransferase of Pseudomonas aeruginosa . Transposon mutagenesis of P. aeruginosa 388 was used to identify genes required for exoenzyme S production. Five Tn 5  Tc insertion mutants were isolated which exhibited an exoenzyme S-deficient phenotype (388::Tn 5  Tc 469, 550, 3453, 4885, and 5590). Mapping experiments demonstrated that 388::Tn 5  Tc 3453, 4885, and 5590 possessed insertions within a 5.0 kb Eco RI fragment that is not contiguous with the exoenzyme S trans -regulatory operon. 388::Tn 5  Tc 469 and 550 mapped to a region downstream of the trans -regulatory operon which has been previously shown to contain a promoter region that is co-ordinately regulated with exoenzyme S synthesis. Nucleotide sequence analysis of a 7.2 kb region flanking the 388::Tn 5  Tc 469 and 550 insertions, identified 12 contiguous open reading frames (ORFs). Database searches indicated that the first ORF, ExsD, is unique. The other 11 ORFs demonstrated high homology to the YscB–L proteins of the yersiniae Yop type III export apparatus. RNase-protection analysis of wild-type and mutant strains indicated that exsD and pscB–L form an operon. To determine whether ExoS was exported by a type III mechanism, derivatives consisting of internal deletions or lacking amino- or carboxy-terminal residues were expressed in P. aeruginosa . Deletion analyses indicated that the amino-terminal nine residues are required for ExoS export. Combined data from mutagenesis, regulatory, expression, and sequence analyses provide strong evidence that P. aeruginosa possesses a type III secretion apparatus which is required for the export of exoenzyme S and potentially other co-ordinately regulated proteins.  相似文献   

2.
Lawley TD  Burland V  Taylor DE 《Plasmid》2000,43(3):235-239
An analysis of the complete nucleotide sequence of the composite tetracycline-resistance transposon Tn10 (9147 bp) from the Salmonella typhi conjugative plasmid R27 is presented. A comparison of the protein sequences from IS10-right and IS10-left transposases has identified four amino acid differences. These residues appear to play an important role in normal transposase function and may account for the differences in exhibited transposition activities. The tetracycline determinants encoded by this version of Tn10 share >99% identity with those of Tn10(R100), demonstrating the conservation that exists between these transposons. A previously uncharacterized approximately 3000-bp region of Tn10 contains four putative open reading frames. One of these open reading frames shares 55% identity with the glutamate permease protein sequence from Haemophilus influenzae although it was unable to complement an Escherichia coli glutamate permease mutant, with which it shares 51% identity. The three remaining putative open reading frames are arranged as a discrete genetic unit adjacent to the glutamate permease homolog and are transcribed in the opposite direction. Two of these open reading frames are homologous with Bacillus subtilis proteins of unknown functions while the other has no homologs in the database. The presence of an aminoacyl-tRNA synthetase class II motif in one of these open reading frames in combination with the glutamate permease homolog allows us to postulate that this region of Tn10 could once have played a role in amino acid metabolism.  相似文献   

3.
A transposon, designated Tn5469, was isolated from mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon following its insertion into the rcaC gene. Tn5469 is a 4,904-bp noncomposite transposon with 25-bp near-perfect terminal inverted repeats and has three tandemly arranged, slightly overlapping potential open reading frames (ORFs) encoding proteins of 104.6 kDa (909 residues), 42.5 kDa (375 residues), and 31.9 kDa (272 residues). Insertion of Tn5469 into the rcaC gene in strain FdR1 generated a duplicate 5-bp target sequence. On the basis of amino acid sequence identifies, the largest ORF, designated tnpA, is predicted to encode a composite transposase protein. A 230-residue domain near the amino terminus of the TnpA protein has 15.4% amino acid sequence identity with a corresponding domain for the putative transposase encoded by Lactococcus lactis insertion sequence S1 (ISS1). In addition, the sequence for the carboxyl-terminal 600 residues of the TnpA protein is 20.0% identical to that for the TniA transposase encoded by Tn5090 on Klebsiella aerogenes plasmid R751. The TnpA and TniA proteins contain the D,D(35)E motif characteristic of a recently defined superfamily consisting of bacterial transposases and integrase proteins of eukaryotic retroelements and retrotransposons. The two remaining ORFs on Tn5469 encode proteins of unknown function. Southern blot analysis showed that wild-type F. diplosiphon harbors five genomic copies of Tn5469. In comparison, mutant strain FdR1 harbors an extra genomic copy of Tn5469 which was localized to the inactivated rcaC gene. Among five morphologically distinct cyanobacterial strains examined, none was found to contain genomic sequences homologous to Tn5469.  相似文献   

4.
5.
6.
Exoenzyme S is an ADP-ribosylating extracellular protein of Pseudomonas aeruginosa that is produced as two immunologically related forms, a 49-kDa enzymatically active form and a 53-kDa inactive form. The postulated relationship between the two proteins involves a carboxy-terminal proteolytic cleavage of the 53-kDa precursor to produce an enzymatically active 49-kDa protein. To determine the genetic relationship between the two forms of exoenzyme S, exoS (encoding the 49-kDa form) was used as a probe in Southern blot analyses of P. aeruginosa chromosomal digests. Cross-hybridizing bands were detected in chromosomal digests of a strain of P. aeruginosa in which exoS had been deleted by allelic exchange. A chromosomal bank was prepared from the exoS deletion strain, 388deltaexoS::TC, and screened with a probe internal to exoS. Thirteen clones that cross-hybridized with the exoS probe were identified. One representative clone contained the open reading frame exoT; this open reading frame encoded a protein of 457 amino acids which showed 75% amino acid identity to ExoS. The exoT open reading frame, cloned into a T7 expression system, produced a 53-kDa protein in Escherichia coli, termed Exo53, which reacted to antisera against exoenzyme S. A histidine-tagged derivative of recombinant Exo53 possessed approximately 0.2% of the ADP-ribosyltransferase activity of recombinant ExoS. Inactivation of exoT in an allelic-replacement strain resulted in an Exo53-deficient phenotype without modifying the expression of ExoS. These studies prove that the 53- and 49-kDa forms of exoenzyme S are encoded by separate genes. In addition, this is the first report of the factor-activating-exoenzyme-S-dependent ADP-ribosyltransferase activity of the 53-kDa form of exoenzyme S.  相似文献   

7.
The regulation of the nutrient-deprivation-induced Sinorhizobium meliloti homogentisate dioxygenase (hmgA) gene, involved in tyrosine degradation, was examined. hmgA expression was found to be independent of the canonical nitrogen regulation (ntr) system. To identify regulators of hmgA, secondary mutagenesis of an S. meliloti strain harboring a hmgA-luxAB reporter gene fusion (N4) was carried out using transposon Tn1721. Two independent Tn1721 insertions were found to be located in a positive regulatory gene (nitR), encoding a protein sharing amino acid sequence similarity with proteins of the ArsR family of regulators. NitR was found to be a regulator of S. meliloti hmgA expression under nitrogen deprivation conditions, suggesting the presence of a ntr-independent nitrogen deprivation regulatory system. nitR insertion mutations were shown not to affect bacterial growth, nodulation of Medicago sativa (alfalfa) plants, or symbiotic nitrogen fixation under the physiological conditions examined. Further analysis of the nitR locus revealed the presence of open reading frames encoding proteins sharing amino acid sequence similarities with an ATP-binding phosphonate transport protein (PhnN), as well as transmembrane efflux proteins.  相似文献   

8.
9.
10.
The complete nucleotide sequence of poliovirus RNA has a long open reading frame capable of encoding the precursor polyprotein NCVP00. The first AUG codon in this reading frame is located 743 nucleotides from the 5' end of the RNA and is preceded by eight AUG codons in all three reading frames. Because all proteins that map at the amino terminus of the polyprotein (P1-1a, VP0, and VP4) are blocked at their amino termini and previous studies of ribosome binding have been inconclusive, direct identification of the initiation site of protein synthesis was difficult. We separated and identified all of the tryptic peptides of capsid protein VP4 and correlated these peptides with the amino acid sequence predicted to follow the AUG codon at nucleotide 743. Our data indicate that VP4 begins with a blocked glycine that is encoded immediately after the AUG codon at nucleotide 743. An S1 nuclease analysis of poliovirus mRNA failed to reveal a splice in the 5' region. We concluded that synthesis of the poliovirus polyprotein is initiated at nucleotide 743, the first AUG codon in the long open reading frame.  相似文献   

11.
An nlp (Ner-like protein) gene was isolated from Escherichia coli. The nucleotide sequence of a 1,342-base-pair chromosomal DNA fragment containing the nlp gene was analyzed. It contained two open reading frames; one encoded 91 amino acid residues with an Mr of 10,361, and the other (ORFX) encoded 131 amino acid residues of the carboxyl-terminal region of a truncated polypeptide. The amino acid sequence deduced from the DNA sequence of nlp was highly homologous (62 to 63%) to the Ner proteins of bacteriophages Mu and D108. The amino-terminal region of Nlp deduced from the complete open reading frame contained a presumed DNA-binding region. The nlp gene was located at 69.3 min on the E. coli genetic map.  相似文献   

12.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

13.
14.
One of the chromosomal regions of Pseudomonas syringae pv. syringae encoding pathogenicity factors had been mapped into a 3.9-kilobase-pair fragment in previous studies. Promoter probe analysis indicated the existence of a promoter near one end of the fragment. DNA sequencing of this fragment revealed the existence of a consensus promoter sequence in the region of the promoter activity and two open reading frames (ORFs) downstream. These ORFs, ORF1 and ORF2, encoded putative polypeptides of 40 and 83 kilodaltons, respectively. All ORF1::Tn5 as well as ORF2::Tn5 mutant strains were nonpathogenic on susceptible host bean plants and were unable to elicit hypersensitive reactions on nonhost tobacco plants. The deduced amino acid sequence of the 83-kilodalton polypeptide contained features characteristic of known integral membrane proteins. Fusion of the lacZ gene to ORF2 led to the expression of a hybrid protein inducible in Escherichia coli. The functions of the putative proteins encoded by ORF1 and ORF2 are unknown at present.  相似文献   

15.
The car and ant operons originally isolated from Pseudomonas resinovorans strain CA10 contain the genes encoding the carbazole/dioxin-degrading enzymes and anthranilate 1,2-dioxygenase, respectively, and are located on the plasmid pCAR1. The entire nucleotide sequence of pCAR1 was determined to elucidate the mechanism by which the car operon may have been assembled and distributed in nature. pCAR1 is a 199,035-bp circular plasmid, and carries 190 open reading frames. Although the incompatibility group of pCAR1 is unclear, its potential origin for replication, OriP, and Rep and Par proteins appeared to be closely related to those of plasmid pL6.5 isolated from Pseudomonas fluorescens. The potential tellurite-resistance klaABC genes identified in the neighboring region of repA gene were also related to those in IncP plasmid originally identified from pseudomonads. On the other hand, we found genes encoding proteins that showed low but significant homology (20-45% identity) with Trh and Tra proteins from Enterobacteriaceae, which are potentially involved in conjugative transfer of plasmids or genomic island, suggesting that pCAR1 is also a conjugative plasmid. In pCAR1, we found tnpAcCST genes that encoded the proteins showing >70% length-wise identities with those are encoded by the toluene/xylene-degrading transposon Tn4651 of TOL plasmid pWW0. Both car and ant degradative operons were found within a 72.8-kb Tn4676 sequence defined by flanking tnpAcC and tnpST genes and bordered by a 46-bp inverted repeat (IR). Within Tn4676 and its flanking region, we found the remnants of numerous mobile genetic elements, such as the duplicated transposase genes that are highly homologous to tnpR of Tn4653 and the multiple candidates of IRs for Tn4676 and Tn4653-like element. We also found distinct regions with high and low G+C contents within Tn4676, which contain an ant operon and car operon, respectively. These results suggested that multiple step assembly could have taken place before the current structure of Tn4676 had been captured.  相似文献   

16.
Previously, several mutants which nodulated peas but which failed to fix nitrogen were isolated following Tn5 mutagenesis of pRL 1JI, a symbiotic plasmid of Rhizobium leguminosarum. Two of these alleles, fix52::Tn5 and fix137::Tn5 were in a region of pRL 1JI which hybridized to a probe that contained the nifA gene and the amino-terminal region of the nifB gene of Klebsiella pneumoniae. The nitrogen fixation defect of the fix52::Tn5 mutant strain was corrected by a 2.0kb fragment of the corresponding wild-type DNA cloned in a wide host-range plasmid. The DNA sequence of this region revealed an open reading frame corresponding to the gene within which the fix52::Tn5 allele was located. The polypeptide corresponding to this open reading frame had a deduced molecular weight of 39,936 and the gene was termed fixZ. The deduced amino acid sequence of the fixZ gene product contained two clusters of cysteine residues, suggesting that the protein may contain an iron-sulphur cluster. The sequence of the fixZ polypeptide was very similar to the sequence of the K. pneumoniae nifB gene (provided by W. Arnold and A. Pühler) which is required for the synthesis of the FeMo-cofactor of nitrogenase. It was shown that the previously observed hybridization was due to homology between the amino terminal regions of fixZ and nifB. Upstream from fixZ was found another open reading frame whose 5' terminus was not established, but within which was located the fix137::Tn5 allele. This gene was termed fixY. The deduced amino acid sequence of the sequenced part of fixY showed similarity to that of the regulatory nifA gene of K. pneumoniae (provided by W. J. Buikema and F. M. Ausubel). Thus in R. leguminoarum the fix genes that correspond to the nifA and nifB genes are in the same relative orientation as in K. pneumoniae.  相似文献   

17.
Nonpiliated, phage phi 6-resistant mutants of Pseudomonas syringae pv. phaseolicola were generated by Tn5 transposon mutagenesis. A P. syringae pv. phaseolicola LR700 cosmid library was screened with Tn5-containing EcoRI fragments cloned from nonpiliated mutants. The cosmid clone pVK253 complemented the nonpiliated mutant strain HB2.5. A 3.8-kb sequenced region spanning the Tn5 insertion site contained four open reading frames. The transposon-inactivated gene, designated pilP, is 525 bp long, potentially encoding a 19.1-kDa protein precursor that contains a typical membrane lipoprotein leader sequence. Generation of single mutations in each of the three remaining complete open reading frames by marker exchange also resulted in a nonpiliated phenotype. Expression of this gene region by the T7 expression system in Escherichia coli resulted in four polypeptides of approximately 39, 26, 23, and 18 kDa, in agreement with the sizes of the open reading frames. The three genes upstream of pilP were designated pilM (39 kDa), pilN (23 kDa), and pilO (26 kDa). The processing of the PilP precursor into its mature form was shown to be inhibited by globomycin, a specific inhibitor of signal peptidase II. The gene region identified shows a high degree of homology to a gene region reported to be required for Pseudomonas aeruginosa type IV pilus production.  相似文献   

18.
Cloning and nucleotide sequence of the chlD locus   总被引:29,自引:19,他引:10       下载免费PDF全文
The nucleotide sequence of a Sau3A1 restriction nuclease fragment that complemented an Escherichia coli chlD::Mu cts mutant strain was determined. DNA and deduced amino acid sequence analysis revealed two open reading frames (ORFs) that potentially codes for proteins with amino acid sequence homology with binding protein-dependent transport systems. One of the ORFs showed a sequence that encoded a protein with properties that were characteristic of a hydrophobic inner membrane protein. The other ORF, which was responsible for complementing a chlD mutant, encoded a protein with conserved sequences in nucleotide-binding proteins and hydrophilic inner membrane proteins in active transport systems. A proposal that the chlD locus is the molybdate transport operon is discussed in terms of the chlD phenotype.  相似文献   

19.
20.
The genes for two different protocatechuate 3,4-dioxygenases (P34Os) were cloned from the 4-sulfocatechol-degrading bacterium Agrobacterium radiobacter strain S2 (DSMZ 5681). The pcaH1G1 genes encoded a P34O (P34O-I) which oxidized protocatechuate but not 4-sulfocatechol. These genes were part of a protocatechuate-degradative operon which strongly resembled the isofunctional operon from the protocatechuate-degrading strain Agrobacterium tumefaciens A348 described previously by D. Parke (FEMS Microbiol. Lett. 146:3-12, 1997). The second P34O (P34O-II), encoded by the pcaH2G2 genes, was functionally expressed and shown to convert protocatechuate and 4-sulfocatechol. A comparison of the deduced amino acid sequences of PcaH-I and PcaH-II, and of PcaG-I and PcaG-II, with each other and with the corresponding sequences from the P34Os, from other bacterial genera suggested that the genes for the P34O-II were obtained by strain S2 by lateral gene transfer. The genes encoding the P34O-II were found in a putative operon together with two genes which, according to sequence alignments, encoded transport proteins. Further downstream from this putative operon, two open reading frames which code for a putative regulator protein of the IclR family and a putative 3-carboxymuconate cycloisomerase were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号