首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
2.
The vaccine made of recombinant envelope protein (rVp28) of white spot syndrome virus (WSSV) expressed in silkworm (Bombyx mori) pupae using a baculovirus vector was used to investigate the efficacy of oral administration on WSSV disease resistance of Procambarus clarkii. Vaccine was mixed with diet at a ratio of 2% (w/w), and Procambarus clarkii were orally administered throughout 75 days. Vaccination with rVP28 showed the significantly higher cumulative survival compared with positive and negative control (P < 0.05) following an oral challenge on the 35th day post-vaccination (dpv), with PRP values 54.16% and 59.26%, respectively. rVP28 induced higher resistance via IM (intramuscular) injection challenge with WSSV stock, with PRP value of 46.12% and 49.99%, respectively. The survivors were subsequently re-challenged on the 55th dpv. rVP28 induced the significantly higher resistance to oral re-challenge (P < 0.05), with both PRP values 55.80% and 63.16%, respectively. rVP28 induced higher resistance to IM injection re-challenge, with both PRP values 31.25%. A DIG labeled WSSV DNA probe was used to detect WSSV by in situ hybridization. The positive cells were observed in epithelial cells of stomach, hepatopancreas and gut of the infected control crayfish, while negative reaction were observed in the tissues of survivors-vaccinated. These results indicated that vaccination of crayfish with recombinant protein had significant effect on oral infection, and had higher resistance against intramuscular injection challenge. This suggested the protection against WSSV could be induced in crayfish by recombinant protein rVp28 expressed in silkworm pupae.  相似文献   

3.
对虾白斑综合症病毒(WSSV)的致病性强、危害性大、地域分布和宿主范围广泛,目前还不能有效地控制疫情。将含有WSSV囊膜蛋白Vp28基因的重组杆状病毒HyNPV-Vp28感染家蚕(Bombyx mori)蛹,对发病蚕血淋巴进行SDS-PAGE和Western blotting分析,结果表明Vp28在家蚕体内得到了表达。将重组病毒囊膜蛋白rVp28疫苗配制成药饵,持续口服免疫75天,对克氏原螯虾进行预防WSSV,实验虾分为2%重组Vp28疫苗、2%普通蚕蛹组织匀浆(阳性对照)和普通饵料(阴性对照)3个处理组。免疫35天后进行口服攻毒,20天内rVp28疫苗组的累积存活率为63.33%,与阳性和阴性对照比差异显著(P<0.05),PRP分别达54.16%和59.26%;注射攻毒后20 天内rVp28疫苗组的累积存活率与阳性和阴性对照组比差异不显著(P>0.05),PRP分别为46.12% 和49.99%。第55天对存活虾再口服攻毒,20天内rVp28疫苗组与阳性和阴性对照组比累积存活率差异显著(P<0.05),PRP分别为55.80%和63.16%;二次注射攻毒后,rVp28疫苗组的PRP均为31.25%。对vVp28疫苗组存活虾的胃、肠和肝胰腺组织进行病毒的原位杂交检测均呈阴性反应,而对照组死亡虾组织都呈阳性反应。本研究表明,口服免疫家蚕蛹表达的病毒囊膜蛋白Vp28能诱导螯虾产生抗病毒保护作用,对应用疫苗预防对虾的病毒性疾病具有重要意义。  相似文献   

4.
AIMS: Construction of a recombinant vector that expresses VP292 protein of white spot syndrome virus (WSSV) and to exploit the possibility of obtaining the vaccine conferring protection against WSSV infection in shrimps. METHODS AND RESULTS: VP292 protein of WSSV was amplified from WSSV genomic DNA by PCR. The target 814 bp amplified product specific for VP292 protein was inserted in to pQE30 expression vector. The recombinant plasmid of VP292 protein was transformed and expressed in Escherichia coli under induction of isopropyl-1-1-thio-beta-D-galactoside (IPTG) and the immunoreactivity of the fusion protein was detected by Western blot. Shrimp were vaccinated by intramuscular injection of the purified protein VP292 of WSSV and challenged for 0-30 days. Vaccination trial experiments show that two injections with recombinant VP292 (rVP292) protein induced a higher resistance, with 52% relative percentage survival value, in the shrimp at the 30th day postvaccination. CONCLUSIONS: The expression system of protein VP292 of WSSV with a high efficiency has been successfully constructed. Vaccination trials show significant resistance in the shrimp vaccinated twice with recombinant VP292. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this study prosper the development of WSSV protein vaccine against WSSV infection in shrimps.  相似文献   

5.
Aims: To achieve high‐level expression and secretion of active VP28 directed by a processing‐efficient signal peptide in Bacillus subtilis WB600 and exploit the possibility of obtaining an oral vaccine against white spot syndrome virus (WSSV) using vegetative cells or spores as delivery vehicles. Methods and Results: The polymerase chain reaction (PCR)‐amplified vp28 gene was inserted into a shuttle expression vector with a novel signal peptide sequence. After electro‐transformation, time‐courses for recombinant VP28 (rVP28) secretion level in B. subtilis WB600 were analysed. Crayfish were divided into three groups subsequently challenged by 7‐h immersion at different time points after vaccination. Subgroups including 20 inter‐moult crayfish with an average weight of 15 g in triplicate were vaccinated by feeding coated food pellets with vegetative cells or spores for 20 days. Vaccination trials showed that rVP28 by spore delivery induced a higher resistance than using vegetative cells. Challenged at 14 days postvaccination, the relative per cent survival (RPS) values of groups of rVP28‐bv and rVP28‐bs was 51·7% and 78·3%, respectively. Conclusions: The recombinant B. subtilis strain with the ability of high‐level secretion of rVP28 can evoke protection of crayfish against WSSV by oral delivery. Significance and Impact of the Study: Oral vaccination by the B. subtilis vehicle containing VP28 opens a new way for designing practical vaccines to control WSSV.  相似文献   

6.
There is growing evidence that recombinant VP28 protein (rVP28) can significantly enhance immune response and disease resistance against white spot syndrome virus (WSSV) in shrimp, although the underlying mechanisms have not been entirely clarified yet. The aim of this study was to determine the effect of rVP28 on histological alterations and WSSV-induced apoptosis in crayfish Procambarus clarkii. Crayfish were fed commercial diets supplemented with different doses of HyNPV-VP28 infected pupae (rVP28-hp) for 4 weeks. Results showed that rVP28-hp may be used as a safe and effective source of medicinal proteins in aquaculture when supplemented in diet at low dose (10 g kg(-1) and 50 g kg(-1)), which could obviously reduce the percentage of apoptotic cells in stomach, gut and hepatopancreas tissues induced by the WSSV challenge and showed the relative percent survival (RPS) of 82.2% and 94.4%, respectively. But rVP28-hp would be detrimental to crayfish survival and decrease resistance to WSSV infection at the high dose (100 g kg(-1) and 200 g kg(-1)), with the cumulative mortality of up to 48.2% and 56.6% after WSSV challenge, respectively. During a 28-d feeding period, the survival rate of crayfish was only 54.5%-75.6%, and histopathological observation showed that one of the principal lesions was serious cell swelling, vacuolar degeneration and necrosis in hepatopancreatic epithelia and myocardial cells. These results suggested that rVP28-hp can influence the immune functions of crayfish in a dose-dependent manner, and the rVP28-hp at the dose of 50 g kg(-1) was recommended to prevent WSSV in crayfish culture.  相似文献   

7.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

8.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

9.
White spot syndrome virus (WSSV) disease is a major threat to shrimp culture worldwide. Here, we assessed the efficacy of the oral administration of purified recombinant VP28, an envelope protein of WSSV, expressed in a Gram-positive bacterium, Brevibacillus brevis, in providing protection in shrimp, Penaeus japonicus, upon challenge with WSSV. Juvenile shrimp (2-3g in body weight) fed with pellets containing purified recombinant VP28 (50mug/shrimp) for 2weeks showed significantly higher survival rates than control groups when challenged with the virus at 3days after the last day of feeding. However, when shrimp were challenged 2weeks after the last day of feeding, survival rates decreased (33.4% and 24.93%, respectively). Survival rate was dose-dependent, increasing from 60.7 to 80.3% as the dose increased from 1 to 50mug/shrimp. At a dose of 50mug/shrimp, the recombinant protein provided protection as soon as 1day after feeding (72.5% survival). Similar results were obtained with larger-sized shrimp. These results show that recombinant VP28 expressed in a Gram-positive bacterium is a potential oral vaccine against WSSV.  相似文献   

10.
White spot syndrome virus (WSSV) is at present one of the major pathogens in shrimp culture worldwide. The complete genome of this virus has been sequenced recently. To identify the structural and functional proteins of WSSV, the purified virions were separated by SDS-PAGE. Twenty-four protein bands were excised, in-gel digested with trypsin, and subjected to matrix-assisted laser desorption ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry, respectively. Eighteen proteins matching the open reading frames of WSSV genome were identified. Except for three known structural proteins and collagen, the functions of the remaining 14 proteins were unknown. Temporal analysis revealed that all the genes were transcribed in the late stage of WSSV infection except for vp121. Of the newly identified proteins, VP466 (derived from band 16) was further characterized. The cDNA encoding VP466 was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Specific antibody was generated with the purified GST-VP466 fusion protein. Western blot showed that the mouse anti-GST-VP466 antibody bound specifically to a 51-kDa protein of WSSV. Immunogold labeling revealed that VP466 protein is a component of the viral envelope. Results in this investigation thus proved the effectiveness of proteomic approaches for discovering new proteins of WSSV.  相似文献   

11.
Lu Y  Liu J  Jin L  Li X  Zhen Y  Xue H  You J  Xu Y 《Fish & shellfish immunology》2008,25(5):604-610
White spot syndrome virus (WSSV) causes high mortality and large economic losses in cultured shrimp. The VP28, VP19 and VP15 genes encode viral structural proteins of WSSV. In this study, hens were immunized with recombinant plasmid (pCI-VP28/VP19/VP15) with linkers or with inactivated WSSV, which used CpG oligodeoxynucleotides (CpG ODNs) and Freund's adjuvant as adjuvant, respectively. Egg yolk immunoglobulin (IgY) from hens immunized with inactivated vaccine and DNA vaccine was obtained, purified and used for protection of Metapenaeus ensis shrimp against WSSV. The data showed that the antibody response of the hens immunized with the DNA vaccine was improved by CpG ODNs as adjuvant, but was still inferior to inactivated WSSV in both sera and egg yolks. Using specific IgY from hens immunized with inactivated WSSV and DNA vaccine to neutralize WSSV, the challenged shrimp showed 73.3% and 33.3% survival, respectively. Thus, the results suggest that passive immunization strategy with IgY will be a valuable method against WSSV infection in shrimp.  相似文献   

12.
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans.  相似文献   

13.
The accumulating evidence indicates that the viral structural proteins play critical roles in virus infection. However, the interaction between the viral structural protein and host cytoskeleton protein in virus infection remains to be addressed. In this study, the viral VP466 protein, one of the major structural proteins of shrimp white spot syndrome virus (WSSV), was characterized. The results showed that the suppression of VP466 gene expression led to the inhibition of WSSV infection in shrimp, indicating that the VP466 protein was required in virus invasion. It was found that the VP466 protein was interacted with the host cytoskeleton protein tropomyosin. As documented, the VP466–tropomyosin interaction facilitated the WSSV infection. Therefore our findings revealed a novel molecular mechanism in the virus invasion to its host, which would be helpful to better understand the molecular events in virus infection in invertebrate.  相似文献   

14.
Widespread evidence indicates that the structural proteins of virus play very important roles in virus-host interactions. However, the effect of viral proteins on host immunity has not been addressed. Our previous studies revealed that the host shrimp Rab6 (termed as PjRab previously), tropomyosin, β-actin and the white spot syndrome virus (WSSV) envelope protein VP466 formed a complex. In this study, the VP466 protein was shown to be able to bind host Rab6 protein and increase its GTPase activity in vivo and vitro. Thus, VP466 could function as a GTPase-activating protein (GAP) of Rab6. In the VP466-Rab-actin pathway, the increase of the Rab6 activity induced rearrangements of the actin cytoskeleton, resulting in the formation of actin stress fibers which promoted the phagocytosis against virus. Therefore our findings revealed that a viral protein could be employed by host to initiate the host immunity, representing a novel molecular mechanism in the virus-host interaction. Our study would help to better understand the molecular events in immune response against virus infection in invertebrates.  相似文献   

15.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

16.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Co...  相似文献   

17.
Previous studies identify VP28 envelope protein of white spot syndrome virus (WSSV) as its main antigenic protein. Although implicated in viral infectivity, its functional role remains unclear. In the current study, we described the production of polyclonal antibodies to recombinant truncated VP28 proteins including deleted N-terminal (rVP28ΔN), C-terminal (rVP28ΔC) and middle (rVP28ΔM). In antigenicity assays, antibodies developed from VP28 truncations lacking the N-terminal or middle regions showed significantly lowered neutralization of WSSV in crayfish, Procambarus clarkii. Further immunogenicity analysis showed reduced relative percent survival (RPS) in crayfish vaccinating with these truncations before challenge with WSSV. These results indicated that N-terminal (residues 1–27) and middle region (residues 35–95) were essential to maintain the neutralizing linear epitopes of VP28 and responsible in eliciting immune response. Thus, it is most likely that these regions are exposed on VP28, and will be useful for rational design of effective vaccines targeting VP28 of WSSV.  相似文献   

18.
A simple strip-test kit for white spot syndrome virus (WSSV) detection was developed using monoclonal antibody W29 (against the VP28 structural protein) conjugated with colloidal gold as the detector antibody. A rabbit anti-recombinant VP28F118 (rVP28) protein antibody in combination with a W28 monoclonal antibody was used as the capture complex at the test line (T), and goat anti-mouse IgG antibody (GAM) was used as the capture antibody at the control line (C). For evidence, the ready-to-use strip was kept in a plastic case and stored in a desiccated plastic bag. A sample volume of 100 microl gill homogenate in application buffer was applied to the sample chamber at one end of the strip and allowed to flow by chromatography through the nitrocellulose membrane to the other end. In test samples containing WSSV, the virus bound to the monoclonal antibody conjugated with colloidal gold and the resulting complex was captured by the antibodies at T to give a reddish-purple band. Any unbound monoclonal antibody conjugated with colloidal gold moved across T to be captured by the GAM and formed a band at C. In samples without WSSV or with WSSV below the limit of detection of the kit, only the band at C was seen. This method was 4 times less sensitive than dot blotting, and about 2 000 000 times less sensitive than 1-step PCR. Nonetheless, it could be used to screen individual shrimp or pooled shrimp samples to confirm high levels of WSSV infection or WSSV disease outbreaks. The beneficial features of this kit are that simple, convenient and quick results can be obtained without the requirement of sophisticated tools or special skills.  相似文献   

19.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV)was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Competitive PCR showed that the viral level was approximately 104 copies/mg tissue in the dilution of gill homogenate of WSSV-infected crayfish at the detection limit of dot-blot assay.Our results suggest that dot-blot analysis with anti-rVP28 MAb could rapidly and sensitively detect WSSV at the early stages of WSSV infection.  相似文献   

20.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号