首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sequence-based prediction method was employed to identify three ligand-binding domains in transferrin-binding protein B (TbpB) of Neisseria meningitidis strain B16B6. Site-directed mutagenesis of residues located in these domains has led to the identification of two domains, amino acids 53 to 57 and 240 to 245, which are involved in binding to human transferrin (htf). These two domains are conserved in an alignment of different TbpB sequences from N. meningitidis and Neisseria gonorrhoeae, indicating a general functional role of the domains. Western blot analysis and BIAcore and isothermal titration calorimetry experiments demonstrated that site-directed mutations in both binding domains led to a decrease or abolition of htf binding. Analysis of mutated proteins by circular dichroism did not provide any evidence for structural alterations due to the amino acid replacements. The TbpB mutant R243N was devoid of any htf-binding activity, and antibodies elicited by the mutant showed strong bactericidal activity against the homologous strain, as well as against several heterologous tbpB isotype I strains.  相似文献   

2.
Transferrin binding protein A (TbpA) is a TonB-dependent outer membrane protein expressed by pathogenic bacteria for iron acquisition from human transferrin. The N-terminal 160 residues (plug domain) of TbpA were overexpressed in both the periplasm and cytoplasm of Escherichia coli. We found this domain to be soluble and monodisperse in solution, exhibiting secondary structure elements found in plug domains of structurally characterized TonB-dependent transporters. Although the TbpA plug domain is apparently correctly folded, we were not able to observe an interaction with human transferrin by isothermal titration calorimetry or nitrocellulose binding assays. These experiments suggest that the plug domain may fold independently of the beta-barrel, but extracellular loops of the beta-barrel are required for ligand binding.  相似文献   

3.
The transferrin iron acquisition system of Neisseria gonorrhoeae consists of two dissimilar transferrin binding proteins (Tbp) A and B. TbpA is a TonB dependent transporter while TbpB is a lipoprotein that makes iron acquisition from transferrin (Tf) more efficient. In an attempt to further define the individual roles of these receptors in the process of Tf-iron acquisition, the kinetics of the receptor proteins in regards to ligand association and dissociation were evaluated. Tf association with TbpB was rapid as compared to TbpA. Tf dissociation from the wild-type receptor occurred in a biphasic manner; an initial rapid release was followed by a slower dissociation over time. Both TbpA and TbpB demonstrated a two-phase release pattern; however, TbpA required both TonB and TbpB for efficient Tf dissociation from the cell surface. The roles of TbpA and TbpB in Tf dissociation were further examined, utilizing previously created HA fusion proteins. Using a Tf-utilization deficient TbpA-HA mutant, we concluded that the slower rate of ligand dissociation demonstrated by the wild-type transporter was a function of successful iron internalization. Insertion into the C-terminus of TbpB decreased the rate of Tf dissociation, while insertion into the N-terminus had no effect on this process. From these studies, we propose that TbpA and TbpB function synergistically during the process of Tf iron acquisition and that TbpB makes the process of Tf-iron acquisition more efficient at least in part by affecting association and dissociation of Tf from the cell surface.  相似文献   

4.
Energy-dependent changes in the gonococcal transferrin receptor   总被引:12,自引:1,他引:11  
The pathogenic Neisseria spp. are capable of iron utilization from host iron-binding proteins including transferrin and lactoferrin. Transferrin iron utilization is an energy-dependent, receptor-mediated event in which two identified transferrin-binding proteins participate. One of these proteins, TbpA, is homologous to the TonB-dependent family of outer membrane receptors that are required for high-affinity uptake of vitamin B12 and ferric siderophores. The 'TonB box' is a conserved domain near the amino-terminus of these proteins that has been implicated in interaction with TonB. Interaction between a periplasmic domain of TonB and the TonB box allows energy transduction to occur from the cytoplasmic membrane to the energy-dependent receptor in the outer membrane. We created a TonB box mutant of gonococcal TbpA and demonstrated that its binding and protease accessibility characteristics were indistinguishable from those of gonococcal Ton system mutants. The protease exposure of the second transferrin-binding protein, TbpB, was affected by the energization of TbpA, consistent with an interaction between these proteins. TbpB expressed by the de-energized mutants was readily accessible to protease, similar to TbpB expressed in the absence of TbpA. The de-energized mutants exhibited a marked decrease in transferrin diffusion rate, suggesting that receptor energization was necessary for ligand release. We propose a model to explain the observed Ton-dependent changes in the binding parameters and exposures of TbpA and TbpB.  相似文献   

5.
Iron scavenging by Neisseria gonorrhoeae is accomplished by the expression of receptors that are specific for host iron-binding proteins, such as transferrin and lactoferrin. Efficient transferrin-iron acquisition is dependent on the combined action of two proteins, designated TbpA and TbpB. TbpA is a TonB-dependent outer membrane receptor, whereas TbpB is lipid modified and serves to increase the efficiency of transferrin-iron uptake. Both proteins, together or separately, can be isolated from the gonococcal outer membrane by using affinity chromatography techniques. In the present study, we identified an additional protein in transferrin-affinity preparations, which had an apparent molecular mass of 45 kDa. The ability to copurify this protein by transferrin affinity was dependent upon the presence of TbpA and not TbpB. The amino-terminal sequence of the 45-kDa protein was identical to the amino terminus of gonococcal TonB, indicating that TbpA stably interacted with TonB, without the addition of chemical cross-linkers. Using immunoprecipitation, we could recover TbpA-TonB complexes without the addition of transferrin, suggesting that ligand binding was not a necessary prerequisite for TonB interaction. In contrast, a characterized TonB box mutant of TbpA did not facilitate interaction between these two proteins such that complexes could be isolated. We generated an in-frame deletion of gonococcal TonB, which removed 35 amino acids, including a Neisseria-specific, glycine-rich domain. This mutant protein, like the parental TonB, energized TbpA to enable growth on transferrin. Consistent with the functionality of this deletion derivative, TbpA-TonB complexes could be recovered from this strain. The results of the present study thus begin to define the requirements for a functional interaction between gonococcal TbpA and TonB.  相似文献   

6.
Transferrin-binding protein B (TbpB) from Neisseria meningitidis binds human transferrin (hTf) at the surface of the bacterial cell as part of the iron uptake process. To identify hTf binding sites within the meningococcal TbpB, defined regions of the molecule were produced in Escherichia coli by a translational fusion expression system and the ability of the recombinant proteins (rTbpB) to bind peroxidase-conjugated hTf was characterized by Western blot and dot blot assays. Both the N-terminal domain (amino acids [aa] 2 to 351) and the C-terminal domain (aa 352 to 691) were able to bind hTf, and by a peptide spot synthesis approach, two and five hTf binding sites were identified in the N- and C-terminal domains, respectively. The hTf binding activity of three rTbpB deletion variants constructed within the central region (aa 346 to 543) highlighted the importance of a specific peptide (aa 377 to 394) in the ligand interaction. Taken together, the results indicated that the N- and C-terminal domains bound hTf approximately 10 and 1000 times less, respectively, than the full-length rTbpB (aa 2 to 691), while the central region (aa 346 to 543) had a binding avidity in the same order of magnitude as the C-terminal domain. In contrast with the hTf binding in the N-terminal domain, which was mediated by conformational epitopes, linear determinants seemed to be involved in the hTf binding in the C-terminal domain. The host specificity for transferrin appeared to be mediated by the N-terminal domain of the meningococcal rTbpB rather than the C-terminal domain, since we report that murine Tf binds to the C-terminal domain. Antisera raised to both N- and C-terminal domains were bactericidal for the parent strain, indicating that both domains are accessible at the bacterial surface. We have thus identified hTf binding sites within each domain of the TbpB from N. meningitidis and propose that the N- and C-terminal domains together contribute to the efficient binding of TbpB to hTf with their respective affinities and specificities for determinants of their ligand.  相似文献   

7.
A dynamic model of the meningococcal transferrin receptor.   总被引:7,自引:0,他引:7  
Iron is an essential nutrient for all organisms and consequently, the ability to bind transferrin and sequester iron from his source constitutes a distinct advantage to a blood-borne bacterial pathogen. Levels of free iron are strictly limited in human serum, largely through the action of the iron-binding protein transferrin. The acquisition of trasferrin-iron is coincident with pathogenicity among Neisseria species and a limited number of other pathogens of human and veterinary significance. In Neisseria meningitidis, transferrin binding relies on two co-expressed, outer membrane proteins distinct in aspects of both structure and function. These proteins are independently and simultaneously capable of binding human transferrin and both are required for the optimal uptake of iron from this source. It has been established that transferrin-binding proteins (designated TbpA and TbpB) form a discrete, specific complex which may be composed of a transmembrane species (composed of the TbpA dimer) associated with a single surface-exposed lipoprotein (TbpB). This more exposed protein is capable of selectively binding iron-saturated transferrin and the receptor complex has ligand-binding properties which are distinct from either of its components. Previous in vivo analyses of N. gonorrhoeae, which utilizes a closely related transferrin-iron uptake system, indicated that this receptor exists in several conformations influenced in part by the presence (or absence) of transferrin.Here we propose a dynamic model of the meningococcal transferrin receptor which is fully consistent with the current data concerning this subject. We suggest that TbpB serves as the initial binding site for iron-saturated transferrin and brings this ligand close to the associated transmembrane dimer, enabling additional binding events and orientating transferrin over the dual TbpA pores. The antagonistic association of these receptor proteins with a single ligand molecule may also induce conformational change in transferrin, thereby favouring the release of iron. As, in vivo, transferrin may have iron in one or both lobes, this dynamic molecular arrangement would enable iron uptake from either iron-binding site. In addition, the predicted molecular dimensions of the putative TbpA dimer and hTf are fully consistent with these proposals. Given the diverse data used in the formulation of this model and the consistent characteristics of transferrin binding among several significant Gram-negative pathogens, we speculate that such receptor-ligand interactions may be, at least in part, conserved between species. Consequently, this model may be applicable to bacteria other than N. meningitidis.  相似文献   

8.
Analysis of bovine respiratory isolates of Pasteurella multocida demonstrated that six of nine strains tested were capable of growth dependent upon bovine transferrin and of specifically binding ruminant transferrins. A single 82-kDa protein was affinity isolated from the P. multocida strains with immobilized bovine transferrin. In contrast to what has been observed in other species, binding of this protein to immobilized transferrin was specifically blocked by the N-lobe subfragment of bovine transferrin. A single gene encoding the 82-kDa protein was flanked by a leucyl-tRNA synthetase gene and an IS1060 element, in contrast to other species where genes encoding the two receptor proteins (TbpB and TbpA) are found in an operonic arrangement. A similar gene arrangement was observed in all of the receptor-positive strains, in spite of the observation that they belonged to different genomic groups. Analysis of the deduced amino acid sequence of the receptor protein indicated that it is a member of the TonB-dependent outer membrane receptor family, and although it is related to transferrin and lactoferrin receptor proteins (TbpAs and LbpAs) from other species, it differs substantially from other members of this group. Amino acid alignments suggest that the reduced size (20 kDa smaller) of the P. multocida TbpA is primarily due to the absence of larger predicted external loops. Collectively these results suggest that P. multocida has a single, novel receptor protein (TbpA) that is capable of efficiently mediating iron acquisition from bovine transferrin without the involvement of a second receptor protein (TbpB).  相似文献   

9.
Pathogenic bacteria in the Neisseriaceae possess a surface receptor mediating iron acquisition from human transferrin (hTf) that consists of a transmembrane iron transporter (TbpA) and a surface‐exposed lipoprotein (TbpB). In this study, we used hydrogen/deuterium exchange coupled to mass spectrometry (H/DX‐MS) to elucidate the effects on hTf by interaction with TbpB or derivatives of TbpB. An overall conserved interaction was observed between hTf and full‐length or N‐lobe TbpB from Neisseria meningitidis strains B16B6 or M982 that represent two distinct subtypes of TbpB. Changes were observed exclusively in the C‐lobe of hTf and were caused by the interaction with the N‐lobe of TbpB. Regions localized to the ‘lip’ of the C1 and C2 domains that flank the interdomain cleft represent sites of direct contact with TbpB whereas the peptides within the interdomain cleft that encompass iron binding ligands are inaccessible in the closed (holo) conformation. Although substantial domain separation upon binding TbpB cannot be excluded by the H/DX‐MS data, the preferred model of interaction involves binding hTf C‐lobe in the closed conformation. Alternate explanations are provided for the substantial protection from deuteration of the peptides encompassing iron binding ligands within the interdomain cleft but cannot be differentiated by the H/DX‐MS data.  相似文献   

10.
The ability to acquire iron directly from host Tf (transferrin) is an adaptation common to important bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae and Neisseriaceae families. A surface receptor comprising an integral outer membrane protein, TbpA (Tf-binding protein A), and a surface-exposed lipoprotein, TbpB (Tf-binding protein B), mediates the iron acquisition process. TbpB is thought to extend from the cell surface for capture of Tf to initiate the process and deliver Tf to TbpA. TbpA functions as a gated channel for the passage of iron into the periplasm. In the present study we have mapped the effect of TbpA from Actinobacillus pleuropneumoniae on pTf (porcine Tf) using H/DX-MS (hydrogen/deuterium exchange coupled to MS) and compare it with a previously determined binding site for TbpB. The proposed TbpA footprint is adjacent to and potentially overlapping the TbpB-binding site, and induces a structural instability in the TbpB site. This suggests that simultaneous binding to pTf by both receptors would be hindered. We demonstrate that a recombinant TbpB lacking a portion of its anchor peptide is unable to form a stable ternary TbpA-pTf-TbpB complex. This truncated TbpB does not bind to a preformed Tf-TbpA complex, and TbpA removes pTf from a preformed Tf-TbpB complex. Thus the results of the present study support a model whereby TbpB 'hands-off' pTf to TbpA, which completes the iron removal and transport process.  相似文献   

11.
The commonly used purification procedures for Transferrin-binding protein B (TbpB) are based on an affinity chromatography step using resins onto which human transferrin had been immobilized. These protocols involve protein elution using denaturing buffer solutions. Here we present an improved protocol which permits protein elution under nondenaturing conditions using chelating agents such as phosphate or compounds containing a pyrophosphate group. Furthermore, isothermal titration calorimetry experiments of the purified protein with holotransferrin have been shown to be a reliable method to assess the purity and activity of the purified material.  相似文献   

12.
Gram-negative bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae, and Neisseriaceae families rely on an iron acquisition system that acquires iron directly from host transferrin (Tf). The process is mediated by a surface receptor composed of transferrin-binding proteins A and B (TbpA and TbpB). TbpA is an integral outer membrane protein that functions as a gated channel for the passage of iron into the periplasm. TbpB is a surface-exposed lipoprotein that facilitates the iron uptake process. In this study, we demonstrate that the region encompassing amino acids 7-40 of Actinobacillus pleuropneumoniae TbpB is required for forming a complex with TbpA and that the formation of the complex requires the presence of porcine Tf. These results are consistent with a model in which TbpB is responsible for the initial capture of iron-loaded Tf and subsequently interacts with TbpA through the anchor peptide. We propose that TonB binding to TbpA initiates the formation of the TbpB-TbpA complex and transfer of Tf to TbpA.  相似文献   

13.
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO3H2)/Thr(PO3H2)-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.  相似文献   

14.
The lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA . The putative product of this open reading frame, tentatively designated lbpB showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N . meningitidis . A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDS-containing sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.  相似文献   

15.
C-type lectin-like domains are found in many proteins, where they mediate binding to a wide diversity of compounds, including carbohydrates, lipids, and proteins. The binding of a C-type lectin-like domain to a ligand is often influenced by calcium. Recently, we have identified a site in the C-type lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin with a tyrosine residue considerably increases the affinity for plasminogen kringle 4, and, in addition, confers affinity for plasminogen kringle 2. As shown by isothermal titration calorimetry analysis, this new interaction is stronger than the binding of wild-type tetranectin to plasminogen kringle 4. This study provides further insight into molecular determinants of importance for binding selectivity and affinity of C-type lectin kringle interactions.  相似文献   

16.
The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.  相似文献   

17.
Alignment of amino-acid sequences from the N-terminal and C-terminal halves of transferrin-binding protein B revealed an underlying bilobed nature with several regions of identity. Based on this analysis, purified recombinant fusion proteins of maltose-binding protein (Mbp) with intact TbpB, its N-terminal half or C-terminal half from the human pathogens Neisseria meningitidis and Moraxella catarrhalis were produced. Solid-phase binding assays and affinity isolation assays demonstrated that the N-terminal and C-terminal halves of TbpB could bind independently to human transferrin (hTf). A solid-phase overlapping synthetic peptide library representing the amino-acid sequence of hTf was probed with soluble, labelled Mbp-TbpB fusions to localize TbpB-binding regions on hTf. An essentially identical series of peptides from domains within both lobes of hTf was recognized by intact TbpB from both organisms, demonstrating a conserved TbpB-hTf interaction. Both halves of TbpB from N. meningitidis bound the same series of peptides, which included peptides from equivalent regions on the two hTf lobes, indicating that TbpB interacts with each lobe of hTf in a similar manner. Mapping of the peptide-binding regions on a molecular model of hTf revealed a series of nearly adjacent surface regions that nearly encircled each lobe. Binding studies with chimeric hTf/bTf transferrins demonstrated that regions in the C-lobe of hTf were preferentially recognized by the N-terminal half of TbpB. Collectively, these results provide evidence that TbpB consists of two lobes, each with distinct yet homologous Tf-binding regions.  相似文献   

18.
Gephyrin is an essential and instructive molecule for the formation of inhibitory synapses. Gephyrin binds directly to the large cytoplasmic loop located between transmembrane helices three and four of the beta-subunit of the glycine receptor and to microtubules, thus promoting glycine receptor (GlyR) anchoring to the cytoskeleton and clustering in the postsynaptic membrane. Besides its structural role, gephyrin is involved in the biosynthesis of the molybdenum cofactor that is essential for all molybdenum-dependent enzymes in mammals. Gephyrin can be divided into an N-terminal trimeric G domain and a C-terminal E domain, which are connected by a central linker region. Here we have studied the in vitro interaction of gephyrin and its domains with the large cytoplasmic loop of the GlyR beta-sub-unit (GlyRbeta-loop). Binding of gephyrin to the GlyR is exclusively mediated by the E domain, and the binding site was mapped to one of its sub-domains (residues 496-654). By using isothermal titration calorimetry, a high affinity (K(d) = 0.2-0.4 microm) and low affinity (K(d) = 11-30 microm) binding site for the GlyRbeta-loop was found on holo-gephyrin and the E domain, respectively, with a binding stoichiometry of two GlyRbeta-loops per E domain in both cases. Binding of the GlyRbeta-loop does not change the oligomeric state of either full-length gephyrin or the isolated E domain.  相似文献   

19.
Gram-negative porcine pathogens from the Pasteurellaceae family possess a surface receptor complex capable of acquiring iron from porcine transferrin (pTf). This receptor consists of transferrin-binding protein A (TbpA), a transmembrane iron transporter, and TbpB, a surface-exposed lipoprotein. Questions remain as to how the receptor complex engages pTf in such a way that iron is positioned for release, and whether divergent strains present distinct recognition sites on Tf. In this study, the TbpB-pTf interface was mapped using a combination of mass shift analysis and molecular docking simulations, localizing binding uniquely to the pTf C lobe for multiple divergent strains of Actinobacillus plueropneumoniae and suis. The interface was further characterized and validated with site-directed mutagenesis. Although targeting a common lobe, variants differ in preference for the two sublobes comprising the iron coordination site. Sublobes C1 and C2 participate in high affinity binding, but sublobe C1 contributes in a minor fashion to the overall affinity. Further, the TbpB-pTf complex does not release iron independent of other mediators, based on competitive iron binding studies. Together, our findings support a model whereby TbpB efficiently captures and presents iron-loaded pTf to other elements of the uptake pathway, even under low iron conditions.  相似文献   

20.
PDZ10 is the 10th of 13 PDZ domains found within MUPP1, a cytoplasmic scaffolding protein first identified as an endogenous binding partner of serotonin receptor type 2c (5HT2c). This association, as with those of several other interacting proteins that have subsequently been identified, is mediated through the C-terminal tail of the PDZ domain partner. Using isothermal titration calorimetry (ITC), we measured the thermodynamic binding parameters [changes in Gibbs free energy (DeltaG), enthalpy (DeltaH) and entropy (TDeltaS)] of the isolated PDZ10 domain for variable-length N-acetylated peptides from the 5HT2c serotonin receptor C-terminal sequence, as well as for octapeptides of eight other putative partner proteins of PDZ10 (5HT2a, hc-kit, hTapp1, mTapp2, TARP, NG2, claudin-1, and HPV-18 E6). In length dependence studies of the 5HT2c sequence, the maximal affinity of the peptides leveled off rapidly and further elongation did not significantly improve the dissociation constant (Kd) of 11 microM observed with the pentapeptide. Among the native partners of PDZ10, octapeptides derived from the hc-kit and 5HT2c proteins were the strongest binders, with Kd values of 5.2 and 8.5 microM, respectively. The heat capacity change (DeltaCp) for the 5HT2c octapeptide was determined to be -94 cal/mol, and a calculated estimate indicates burial of polar and apolar surface areas in equal measure upon ligand binding. Peptides with phosphoserine at either the P-1 or P-2 position experienced decreased affinity, which is in accord with the hypothesis that reversible phosphorylation is a possible mechanism for regulating PDZ domain-mediated interactions. Additionally, two conformationally constrained side chain-bridged cyclic peptide ligands were also designed, prepared, evaluated by ITC, and shown to bind PDZ10 primarily through a favorable change in entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号