首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Atrial natriuretic factor (ANF) and dopamine (DA) are both important regulators of sodium and water transport across renal proximal tubules. Many evidences suggest that some of ANF inhibitory effects on sodium and water reabsorption are mediated by dopaminergic mechanisms. We have previously reported that ANF stimulates extraneuronal DA uptake in external renal cortex by activation of NPR-A receptors coupled to cGMP signal and PKG. Moreover, ANF enhanced DA-induced inhibition of Na(+)-K(+) ATPase activity. The aim of the present study was to evaluate if ANF could alter also renal DA release, catabolism and turn over. The results indicate that ANF did not affect basal secretion of the amine in external renal cortex or its KCl-induced release, but diminished DA turn over. Moreover, ANF diminished COMT and did not alter MAO activity. In conclusion, present results as well as previous findings show that ANF modifies DA metabolism in rat external renal cortex by enhancing DA uptake and decreasing COMT activity. All those effects, taken together, may favor DA accumulation into renal cells and increase its endogenous content and availability. This would permit D1 receptor recruitment and stimulation and in turn, Na(+), K(+)-ATPase activity over inhibition that results in decreased sodium reabsorption. Therefore, ANF and DA could act via a common pathway to enhance natriuresis and diuresis.  相似文献   

2.
Albumin or Dextran solutions of varying concentration were infused into the renal artery of hydropenic dogs. Their effect on urine flow, sodium excretion, creatinine and PAH clearance, single nephron GFR, fractional and absolute fluid reabsorption in the proximal convolution, reabsorptive t1/2, and hydrostatic pressures in the proximal tubules and adjacent capillaries was compared with a similar infusion of isotonic saline solution. Six, 9, 12, 18 and 25% albumin and 6% Dextran solution did not significantly change the measured parameters. Infusion of 9 and 12% Dextran solution elicited a decrease in water and sodium excretion as well as absolute and fractional proximal tubular fluid reabsorption to a 5% level of significance. Infusion of 18% Dextran was accompanied by a marked decrease in total and proximal reabsorption combined with a decline of GFR, PAH clearance, and hydrostatic pressures in tubules and peritubular capillaries. The results do not support the hypothesis of a direct action of oncotic pressure on tubular fluid reabsorption; the above described effects of Dextran seem to be accounted for by its other "pharmacological" effect.  相似文献   

3.
The lateral intercellular spaces (LIS) are believed to be the final common pathway for fluid reabsorption from the renal proximal tubule. We postulate that electrogenic sodium pumps in the lateral membranes produce an electrical potential within the LIS, that the lateral membranes bear a net negative charge, and that fluid moves parallel to these membranes because of Helmholtz-type electro-osmosis, the field- induced movement of fluid adjacent to a charged surface. Our theoretical analysis indicates that the sodium pumps produce a longitudinal electric field of the order of 1 V/cm in the LIS. Our experimental measurements demonstrate that the electrophoretic mobility of rat renal basolateral membrane vesicles is 1 micron/s per V/cm, which is also the electro-osmotic fluid velocity in the LIS produced by a unit electric field. Thus, the fluid velocity in the LIS due to electro-osmosis should be of the order of 1 micron/s, which is sufficient to account for the observed reabsorption of fluid from renal proximal tubules. Several experimentally testable predictions emerge from our model. First, the pressure in the LIS need not increase when fluid is transported. Thus, the LIS of mammalian proximal tubules need not swell during fluid transport, a prediction consistent with the observations of Burg and Grantham (1971, Membranes and Ion Transport, pp. 49-77). Second, the reabsorption of fluid is predicted to cease when the lumen is clamped to a negative voltage. Our analysis predicts that a voltage of -15 mV will cause fluid to be secreted into the Necturus proximal tubule, a prediction consistent with the observations of Spring and Paganelli (1972, J. Gen. Physiol., 60:181).  相似文献   

4.
Using quantitative cytochemistry, activities of Na, K-ATPase, succinate dehydrogenase (SDH) and alpha-keto-glutarate dehydrogenase (alpha-KDH) was investigated in cells of renal tubules at different levels of sodium reabsorption in the kidney. The activity of these enzymes in mammals and birds renal tubule cells was found to be higher than in the cells of corresponding renal tubules of cold-blooded vertebrates. This corresponds to the increased total amount of reabsorbed sodium in the kidney of warm-blooded animals. The summer frogs, as compared to the winter ones, exhibit higher activities of SDH and Na,K-ATPase in the proximal tubule cells where changes in sodium reabsorption are also noted. In the kidney of marine teleosts, a negative correlation between U/PNa and the activity of SDH and Na,K-ATPase in the cells of proximal and distal tubule was observed. Aldosterone was found to stimulate sodium reabsorption and to activate Na,K-ATPase.SDH and alpha-KDH mainly in the distal convoluted tubule. Furosemide was observed to inhibit sodium reabsorption and to reduce SDH and Na,K-ATPase activities in cells of the proximal tubule and Henle's loop. In the kidney of adrenalectomized rats, both sodium reabsorption and activities of Na,K-ATPase, SDH, alpha-KDH decreased in all the segments of the nephron. The data obtained suggest that changes in sodium reabsorption may be coupled with those in the activities of the investigated enzymes.  相似文献   

5.
Two to 4 hours after unilateral renal exclusion in rats, urine flow rate from the remaining kidney had increased to twice the control level, whereas the filtration rate remained unchanged. After contralateral nephrectomy, NGFR was similar to that of controls, but fractional water reabsorption along proximal tubules decreased. Protein concentration in efferent arteriolar plasma, and hydrostatic pressure gradient between proximal tubules and peritubular capillaries were similar in experimental and control kidneys. Unilateral renal exclusion was followed by a rapid increase of blood pressure. Prevention of this rise depressed but did not abolish functional compensatory adaptation. The occurrence of compensatory adaptation was not affected by decreased renal perfusion pressure.  相似文献   

6.
The convoluted proximal and straight distal tubules and the medullary collecting ducts in kidneys of rats with ischaemic renal hypertension and with genetic spontaneous hypertension were studied by means of electron microscopic morphometry. The volume of mitochondria, the area of their cristae, of the outer surface and of membranes of the intercellular labyrinth, and other ultrastructural characterisitcs were calculated. No significant differences were found in proximal tubules between experimental and control animals, although in the distal tubules in both experiments the coefficient characterizing the level of morphologic organization of mitochondria, which takes into account their basic morphometric parameters, was reduced in hypertensive animals as compared with the intact ones. The volume of mitochondria and the area of their cristae in collecting ducts, and also the area of membranes of the intercellular labyrinth were increased. Our results suggest that in hypertension the reabsorption of substances from the proximal tubules is essentially normal, that it is reduced at the beginning of the distal tubules but is intensified in the collecting ducts.  相似文献   

7.
8.
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant.  相似文献   

9.
The mechanisms and control of transepithelial inorganic sulfate (Si) transport by primary cultures of chick renal proximal tubule monolayers in Ussing chambers were determined. The competitive anion, S2 O 3 2- (5 mM), reduced both unidirectional reabsorptive and secretory fluxes and net Si reabsorption with no effect on electrophysiological properties. The carbonic anhydrase (CA) inhibitor ethoxzolamide decreased net Si reabsorption approximately 45%. CAII protein and activity were detected in isolated chick proximal tubules by immunoblots and biochemical assay, respectively. Cortisol reduced net Si reabsorption up to approximately 50% in a concentration-dependent manner. Thyroid hormone increased net Si reabsorption threefold in 24 h, and parathyroid hormone (PTH) acutely stimulated net Si reabsorption approximately 45%. These data indicate that CA participates in avian proximal tubule active transepithelial Si reabsorption, which cortisol directly inhibits and T3 and PTH directly stimulate.  相似文献   

10.
The reabsorption of horseradish peroxidase (HRP) by the proximal tubule cells of rat kidneys was investigated by measuring the concentration of HRP in total particulate fractions of the cortex 1/4 and 1 hr after intravenous injection, and by correlated cytochemical observations. When compared to the corresponding values of the control animals, the concentration of HRP 1 hr after injection was decreased approximately 10-fold in the renal cortex of rats which had received an intravenous injection of hypertonic saline or two subcutaneous injections of mannitol. The plasma clearance and the urinary excretion of HRP were not altered significantly after injection of hypertonic saline, but the plasma clearance was decreased and the urinary excretion increased after injection of mannitol. When the dose of injected HRP was varied, the reabsorption of HRP by the renal cortex was proportional to the dose in the experimental and the control animals. Cytochemical staining for peroxidase activity also showed that the phagosomes and phagolysosomes of the proximal tubule cells contained much less peroxidase in the experimental rats than in the control rats. After injection of mannitol, large vacuoles appeared in the proximal tubule cells. The vacuoles often contained peroxidase-positive granules (phagosomes) which varied in diameter from the limit of microscopic visibility up to several microns. Most of the vacuoles did not react for acid phosphatase activity, but lysosomes were often aggregated around the vacuoles and seemed to release acid phosphatase into the cytoplasm. Certain analogies between the reabsorption of protein and that of water by the proximal tubule cells are discussed.  相似文献   

11.
There is considerable evidence that the renal nerves contribute to the regulation of salt and water excretion by a direct effect on tubular reabsorption, independent of changes in renal hemodynamics. Whereas the effect of the adrenergic nervous system on sodium reabsorption appears to be established in anesthetized animals, it has been suggested that the basal activity of the renal sympathetic nerves in conscious dogs is too low to have a significant effect on sodium reabsorption by the proximal tubules. However, denervation natriuresis and diuresis have recently been demonstrated in conscious euvolemic and conscious volume-expanded rats. The effects of renal nerve stimulation on the handling of sodium and water by the proximal tubule can be mimicked by infusion of the α-adrenergic agonist norepinephrine and prevented by infusion of an α-adrenergic antagonist. This confirms that they are mediated by α-receptors. The adrenergic nervous system may have an independent role in the control of sodium excretion or may be complementary to other systems such as the renin-angiotensin-aldosterone system.  相似文献   

12.
The high water permeability of kidney proximal tubules is of paramount importance for isotonic reabsorption of 70% of the glomerular filtrate, and water channels have been postulated to account for the high water permeability. Target analysis following radiation inactivation was used to probe the molecular size of the water channel. Samples of brush border membranes from rat renal cortex were subjected to 3-MeV electron pulses from the Van de Graaff accelerator at a temperature of -130 degrees C. The inactivation of the renal brush border enzymes, alkaline phosphatase, and maltase was used for internal standardization of accumulated dose measurements in target analysis of the water channel. Osmotic water permeability was measured by following the change in scattered light intensity upon rapid mixing of vesicles with a hypertonic solution using stopped-flow spectrophotometry. The vesicle shrinkage response was biphasic and the rate of the fast phase decreased dose dependently by irradiation corresponding to a target size of 30 +/- 3.5 kDa. The total change in scattered light intensity was unaltered, indicating that irradiation did not destroy the lipid barrier. Our results provide strong support for the hypothesis that the high osmotic water permeability of renal proximal tubules results from a water channel-specific protein with a functional unit of 30 kDa.  相似文献   

13.
Dopamine D4 receptors mediate inhibition of vasopressin-dependent sodium reabsorption by dopamine in collecting tubules. At present, the distribution of D4 receptors in other renal districts remains an open issue. The renal distribution of D4 receptor was assessed in normally innervated and denervated male Sprague-Dawley rats by quantitative immunohistochemistry using an anti-dopamine D4 receptor rabbit polyclonal antibody. D4 receptor protein immunoreactivity was observed perivascularly in the adventitia and the adventitia-media border. The density of perivascular dopamine D4 receptor was higher in afferent and efferent arterioles than in other segments of the renal vascular tree. Renal denervation abolished perivascular dopamine D4 receptor protein immunoreactivity. In renal tubules, the epithelium of collecting tubules showed the highest dopamine D4 receptor protein immunoreactivity, followed by the epithelium of proximal and distal tubules. No dopamine D4 receptor protein immunoreactivity was observed in the epithelium of the loop of Henle. Denervation did not change dopamine D4 receptor protein immunoreactivity in renal tubules. These results indicate that rat kidney expresses dopamine D4 receptors located both prejunctionally and nonprejunctionally in collecting, proximal, and distal tubules. This suggests that the dopamine D4 receptor may be involved in the control of neurotransmitter release and in renal hemodynamic and tubule function.  相似文献   

14.
A A Nikiforov 《Tsitologiia》1985,27(7):834-837
Cadmium ions (10(-5)-10(-3) M) stimulate Na-dependent transport of a weak organic acid, fluorescein, into the proximal tubules of surviving frog kidney. Their stimulatory action ceases with increasing the duration of incubation to 45-60 minutes (stimulation does not disappear after introducing acetate into the incubating medium), in the presence of amiloride in the tubular lumen or in the absence of Na+ from the medium. The data obtained in the present work coincide with the previously reported evidence of the influence of Cd2+ on the Na-independent fluorescein transport into the proximal tubules of rat kidney. They are in good accordance with the suggestion that the effect of Cd2+ of the weak organic acid transport is mediated through an acceleration of the active reabsorption of Na+ with the accompanying activation of Na,K-ATPase.  相似文献   

15.
Ischemia/reperfusion (I/R) is an important cause of acute renal failure. Recent studies have shown that the complement system mediated by the mannan-binding protein (MBP), which is a C-type serum lectin recognizing mannose, fucose and N-acetylglucosamine residues, plays a critical role in the pathogenesis of ischemic acute renal failure. MBP causes complement activation through the MBP lectin pathway and a resulting complement component, C3b, is accumulated on the brush borders of kidney proximal tubules in a renal I/R-operated mouse kidney. However, the initial step of the complement activation has not been studied extensively. We previously identified both meprins α and β, highly glycosylated zinc metalloproteases, localized on kidney proximal tubules as endogenous MBP ligands. In the present study, we demonstrated that serum-type MBP (S-MBP) and C3b were co-localized with meprins on both the cortex and the medulla in the renal I/R-operated mouse kidney. S-MBP was indicated to interact with meprins in vivo in the I/R-operated mouse kidney and was shown to initiate the complement activation through the interaction with meprins in vitro. Taken together, the present study strongly suggested that the binding of S-MBP to meprins triggers the complement activation through the lectin pathway and may cause the acute renal failure due to I/R on kidney transplantation and hemorrhagic shock.  相似文献   

16.
Recently, two l-ascorbic acid transporters were identified; sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2. The previous study suggested that SVCT protein might be present on the apical membrane in the straight segment (S3) of proximal tubule. In the present study, SVCT1 immunoreactivity (IR) was observed in the brush border of proximal straight tubules in the medullary ray of renal cortex and the outer stripe of outer medulla, while SVCT2 IR was not localized in any region of the kidney. Since the mechanism of VC reabsorption in the kidney has not been fully elucidated up to the present time, it is meaningful to demonstrate the exact cellular distribution of SVCT protein in the kidney.  相似文献   

17.
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na+/K+ pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1–2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na+ concentration gradient built by the Na+/K+ pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.  相似文献   

18.
A unique opportunity presented itself for a morphologic study of experimental unilateral acute renal failure (ARF) in male rats. The ARF had been induced in the rats by temporary occlusion (1h) of the left renal artery. Twenty-nine rats were divided into subsets as follows: 2-3 h, 24 h, 1 week, 2, 4, 8, and 12 weeks following release of occlusion. Microdissection showed a heterogeneous population of abnormally structured proximal tubules in which the regressive lesions of tubular necrosis were combined with the progressive reaction of repair. The lesions demonstrated are reminiscent of those which have been described in ARF in the human and in experimental animals. Many proximal tubules in the 2- to 3-hour subset presented 1-3 disruptive lesions (DLs) while greater numbers of proximal tubules from the 24-hour group presented 1-5 DLs. Many proximal tubules presented no DLs, but nearly all from the 24-hour subset (97-100%) displayed a squamate appearance which paralleled and was caused by acute tubular necrosis. At 1 week, a dilated pars recta was common, but by this time, the squamate pattern had disappeared. Many casts were present. At 2 weeks, many fewer casts were present in proximal tubules and none were seen at 4, 8 or 12 weeks. The nephrons, particularly the proximal tubules, presented a variety of structural alterations at 2, 4, 8 and 12 weeks. Changes of special interest include (1) the presence of swan-necks; (2) a distinctive squamate appearance of the proximal tubules in the animals killed at 24 h; (3) a spiral, curled appearance caused by differential hyperplasia in animals at 4, 8 and 12 weeks, and (4) a tendency for ischemic lesions to involve all layers of the renal cortex.  相似文献   

19.
Oriental white-backed vultures (Gyps bengalensis; OWBVs) died of renal failure when they ingested diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), in tissues of domestic livestock. Acute necrosis of proximal convoluted tubules in these vultures was severe. Glomeruli, distal convoluted tubules, and collecting tubules were relatively spared in the vultures that had early lesions. In most vultures, however, lesions became extensive with large urate aggregates obscuring renal architecture. Inflammation was minimal. Extensive urate precipitation on the surface and within organ parenchyma (visceral gout) was consistently found in vultures with renal failure. Very little is known about the physiologic effect of NSAIDs in birds. Research in mammals has shown that diclofenac inhibits formation of prostaglandins. We propose that the mechanism by which diclofenac induces renal failure in the OWBV is through the inhibition of the modulating effect of prostaglandin on angiotensin II-mediated adrenergic stimulation. Renal portal valves open in response to adrenergic stimulation, redirecting portal blood to the caudal vena cava and bypassing the kidney. If diclofenac removes a modulating effect of prostaglandins on the renal portal valves, indiscriminant activation of these valves would redirect the primary nutrient blood supply away from the renal cortex. Resulting ischemic necrosis of the cortical proximal convoluted tubules would be consistent with our histologic findings in these OWBVs.  相似文献   

20.
ANG II is the most potent and important member of the classical renin-angiotensin system (RAS). ANG II, once considered to be an endocrine hormone, is now increasingly recognized to also play novel and important paracrine (cell-to-cell) and intracrine (intracellular) roles in cardiovascular and renal physiology and blood pressure regulation. Although an intracrine role of ANG II remains an issue of continuous debates and requires further confirmation, a great deal of research has recently been devoted to uncover the novel actions and elucidate underlying signaling mechanisms of the so-called intracellular ANG II in cardiovascular, neural, and renal systems. The purpose of this article is to provide a comprehensive review of the intracellular actions of ANG II, either administered directly into the cells or expressed as an intracellularly functional fusion protein, and its effects throughout a variety of target tissues susceptible to the impacts of an overactive ANG II, with a particular focus on the proximal tubules of the kidney. While continuously reaffirming the roles of extracellular or circulating ANG II in the proximal tubules, our review will focus on recent evidence obtained for the novel biological roles of intracellular ANG II in cultured proximal tubule cells in vitro and the potential physiological roles of intracellular ANG II in the regulation of proximal tubular reabsorption and blood pressure in rats and mice. It is our hope that the new knowledge on the roles of intracellular ANG II in proximal tubules will serve as a catalyst to stimulate further studies and debates in the field and to help us better understand how extracellular and intracellular ANG II acts independently or interacts with each other, to regulate proximal tubular transport and blood pressure in both physiological and diseased states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号