首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between torque-velocity characteristics of the knee extensors during isokinetic contractions and muscle fiber type of the vastus lateralis, determined from two muscle biopsy samples, was investigated in 12 male and 18 female subjects. Peak torque, corrected for the effect of gravity and impact artifact, was classified as corrected peak torque. The torque measured 30 degrees from full extension and, corrected for gravity, was classified as corrected torque at 30 degrees. No significant correlations were found between the percentage of fast-twitch fibers (%FT) or the relative area of FT fibers (%FTA) and corrected peak torque values for any of the velocities tested or the knee angles where corrected peak torques were measured. However, significant inverse relationships were determined for corrected torque at 30 degrees at all but the fastest velocity (270 degrees/s) and both %FT and %FTA for the male subjects. These results reveal that muscle fiber type of the vastus lateralis, based on duplicate muscle samples, is not related to the peak torque actually generated by the knee extensors but may influence the shape of the torque output for maximal contractions sustained over the entire range of motion.  相似文献   

2.
The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance. The volunteers activated a target motor unit at the minimum discharge rate in eight 3-min-long contractions, three before and five after an isometric contraction at 40% of the maximal torque, sustained until endurance. Multichannel surface electromyogram signals and joint torque were averaged with the target motor unit potential as trigger. Discharge rate (mean +/- SE, 6.6 +/- 0.2 pulses/s) and interpulse interval variability (33.3 +/- 7.0%) were not different in the eight contractions. Peak twitch torque and recruitment threshold increased significantly (93 +/- 29 and 12 +/- 5%, P <0.05) in the contraction immediately after the endurance task with respect to the preendurance values (0.94 +/- 0.26 mN.m and 3.7 +/- 0.5% of the maximal torque), whereas time to peak of the twitch torque did not change (74.4 +/- 10.1 ms). Muscle fiber conduction velocity decreased and action potential duration increased in the contraction after the endurance (6.3 +/- 1.8 and 9.8 +/- 1.8%, respectively, P <0.05; preendurance values, 3.9 +/- 0.2 m/s and 11.1 +/- 0.8 ms), whereas the surface potential peak-to-peak amplitude did not change (27.1 +/- 3.1 microV). There was no significant correlation between the relative changes in muscle fiber conduction velocity or surface potential duration and in peak twitch torque (R2= 0.04 and 0.10, respectively). In conclusion, modifications in peak twitch torque of low-threshold motor units with sustained contraction are mainly determined by mechanisms not related to changes in action potential shape and in its propagation velocity.  相似文献   

3.
Standardized measurements of dynamic strength of the kneee extensor muscles were performed in 25 healthy male subjects (17-37 yr) by means of isokinetic contractions, i.e., knee extensions with constant angular velocities. Overall variation between double determinations of maximal torque throughout the 90 degrees arc of motion (0 degrees = fully extended leg) averaged 10% for the different constant velocities chosen. At any given angle of the knee the torque produced was higher for isometric than for dynamic contractions. Dynamic torque decreased gradually with increased speed of shortening. Peak dynamic torque was reached at knee angles in the range: 55-66 degrees, with a displacement toward smaller knee angles with higher angular velocities. Correlations were demonstrated between peak torque produced at the highest speed of muscle shortening and percent as well as relative area of fast twitch fibers in the contracting muscle. In addition muscles with a high percentage of fast twitch fibers had the highest maximal contraction speeds. These observations on intact human skeletal muscle are consistent with earlier findings in animal skeletal muscle preparations.  相似文献   

4.
Ultrastructural and twitch contractile characteristics of the human triceps surae were determined in six healthy but very sedentary subjects before and after 16 weeks of isometric training at 30% maximal voluntary contraction (MVC). Following training, twitch contraction time was approximately 16% shorter, although no differences were observed in one-half relaxation time or peak twitch torque. Percent fibre type was not changed by training. The mean area of type I and type II fibres in the soleus increased by approximately 30% but only type II fibres showed an increase in area in the lateral gastrocnemius (30%). Despite such changes in fibre area the volume density of the sarcoplasmic reticulum-transverse tubular network averaged 3.2 +/- 0.6% and 5.9 +/- 0.9% in type I and type II fibres respectively, before and after training in the two heads of the gastrocnemius. The results indicate that contractile adaptations to isometric training at 30% MVC were limited to twitch contraction time and were not directly related to changes in percent fibre distribution or the volume of sarcoplasmic reticulum and transverse tubules in either type I or type II fibres. The data further demonstrate that substantial fibre hypertrophy is achieved by training with low-intensity contractions.  相似文献   

5.
Torque-velocity relationship in isokinetic cycling exercise   总被引:1,自引:0,他引:1  
Seven healthy female subjects performed brief (less than 10 s) periods of maximal exercise on a constant-velocity cycle ergometer, over the functional range of pedaling velocities, and an isometric contraction with each leg. There was an inverse relationship between peak torque and pedal crank velocity in all subjects; isometric torque was (mean +/- SE) 19.8 +/- 8.3% greater than the torque recorded at the slowest velocity of 11 rpm. The torque-velocity relationship was described best by a single exponential equation: y = 189.6 X e-0.0834x, where y is peak torque in Newton . meters and x is crank velocity in revolutions per minute. Peak power was a parabolic function of crank velocity; the data were fitted suitably by a second-order polynomial equation: y = -0.0589x2 + 14.504x + 47.092, where y is peak power in watts and x is crank velocity in revolutions per minute. Maximal peak power occurred at crank velocities ranging from 120 to 160 rpm, when the torque was 0.36 +/- 0.06 of the maximal isometric tension. These results demonstrate the importance of recording velocity in measurements of dynamic maximal power.  相似文献   

6.
The relationship between electrically evoked isometric and isokinetic properties of the triceps surae have been studied in 11 healthy male subjects. The results showed that the time to peak tension (TPT) and half relaxation time (1/2 RT) of the maximal twitch were 110 +/- 11 ms and 82 +/- 11 ms respectively, and the peak rates of rise of contraction (delta P50, delta P200) and relaxation (delta PR50, delta PR200) at 50 and 200 Hz were 0.36 +/- 0.07, 0.48 +/- 0.08 and 1.27 +/- 0.33, 1.25 +/- 0.27% Po ms-1 respectively. The decline in force during a fatigue test was significantly (P less than 0.02) associated with the decrease in maximal relaxation rate (r = 0.79). The TPT was significantly (P less than 0.05) and inversely related to delta P50 and delta P200. The mean angle specific torque-velocity relationship for the 11 subjects was adequately described by the empirical exponential equation of the form: V = 16.5 (e-P/30.8-e-84.3/30.8) where V = velocity (rads s-1) and P = torque (Nm). The only significant association found between the isometric and isokinetic properties of the muscle was between delta PR200 and the torque expressed at a given velocity of 4 rads s-1. This lack of association between the two variables is difficult to explain with certainty but it is suggested that it may be due to the differential effects of Ca2+ release and uptake and cross-bridge turnover rate in the two situations.  相似文献   

7.
Overweight and obese children demonstrate inferior motor performance for strength- and power-related activities requiring support or lifting of body weight. Our purpose here was to determine whether the inferior performance could be attributed to a lower strength to muscle area ratio in the obese. Eleven nonobese (16.6% fat) and 13 obese (35.5% fat) boys (9-13 years old) volunteered for the study. Peak torque was measured during voluntary isometric and isokinetic elbow flexion and knee extension at four joint angles and four velocities, respectively. The contractile properties, twitch torque, time to peak torque, and half-relaxation time were evoked for the elbow flexors by percutaneous stimulation. Elbow flexor and knee extensor cross-sectional areas (CSA) were determined by computed axial tomography taken at the mid-upper arm and mid-thigh, respectively. Isometric and isokinetic elbow flexion and knee extension strength normalized for body weight were significantly (p less than 0.05) higher in the nonobese compared to the obese boys. There were no significant (p greater than 0.05) differences, however, between groups for elbow flexor and knee extensor CSA or for absolute and relative (normalized for muscle CSA or the product of muscle CSA and height, the latter accounting for differences in moment arm length) isometric, isokinetic, or evoked twitch torque for elbow flexion or knee extension. Likewise, there were no differences between groups for the time-related contractile properties, time to peak torque, or half-relaxation time. These findings suggest that there is no difference in the intrinsic strength or contractile properties of the elbow flexor and knee extensor muscles between obese and nonobese pre-adolescent boys and that other factors, such as the handicapping effect of excess fat mass, probably account for the reduced motor performance of the obese child.  相似文献   

8.
The aim of the study was to jointly analyze temperature-induced changes in low-threshold single motor unit twitch torque and action potential properties. Joint torque, multichannel surface, and intramuscular electromyographic signals were recorded from the tibialis anterior muscle of 12 subjects who were instructed to identify the activity of a target motor unit using intramuscular electromyographic signals as feedback. The target motor unit was activated at the minimum stable discharge rate in seven 3-min-long contractions. The first three contractions (C1-C3) were performed at 33 degrees C skin temperature. After 5 min, the subject performed three contractions at 33 degrees C (T1), 39 degrees C (T2), and 45 degrees C (T3), followed by a contraction at 33 degrees C (C4) skin temperature. Twitch torque and multichannel surface action potential of the target motor unit were obtained by spike-triggered averaging. Discharge rate (mean +/- SE, 7.1 +/- 0.5 pulses/s), interpulse interval variability (35.8 +/- 9.2%), and recruitment threshold (4.5 +/- 0.4% of the maximal voluntary torque) were not different among the seven contractions. None of the investigated variables were different among C1-C3, T1, and C4. Conduction velocity and peak twitch torque increased with temperature (P < 0.05; T1: 3.53 +/- 0.21 m/s and 0.82 +/- 0.23 mN x m, T2: 3.93 +/- 0.24 m/s and 1.17 +/- 0.36 mN x m, T3: 4.35 +/- 0.25 m/s and 1.46 +/- 0.40 mN x m, respectively). Twitch time to peak and surface action potential peak-to-peak amplitude were smaller in T3 (61.8 +/- 2.0 ms and 27.4 +/- 5.1 microV, respectively) than in T1 (71.9 +/- 4.1 ms and 35.0 +/- 6.5 microV, respectively) (P < 0.05). The relative increase in conduction velocity between T1 and T3 was positively correlated (P < 0.05) with the increase in twitch peak amplitude (r2 = 0.48), with the decrease in twitch time to peak (r2 = 0.43), and with the decrease in action potential amplitude (r2 = 0.50). In conclusion, temperature-induced modifications in fiber membrane conduction properties may have a direct effect on contractile motor unit properties.  相似文献   

9.
The influence of elbow joint angle on elbow flexor isometric evoked twitch contractile properties was assessed in 15 young women (F), 18 young men (M) and 11 male bodybuilders (BB). Measurements were made at elbow joint angles of 1.31, 1.57, 1.83, 2.09, 2.36, 2.62 and 2.88 rad (3.14 rad =180° =full extension). The largest peak twitch torque values [mean (SE) N · m] in F [3.77 (0.20)], M [10.38 (0.68)] and BB [11.38 (1.05)] occurred at 2.88 rad. Peak torque was progressively smaller at smaller joint angles, but the decline from 2.88 to 1.31 rad was greater in M (68%) and BB (76%) than F (59%). Thus, the magnitude of intergroup differences in peak twitch torque (PT) was joint angle dependent. Twitch time to peak torque (TPT) was influenced in a complex way by joint angle in the three groups; BB had the lowest values at small joint angles but the highest values at the largest angles. Half-relaxation time (HRT) generally increased from the smallest to largest joint angles in a pattern that did not differ significantly among the three groups. Maximum rates of twitch torque development and relaxation showed the same pattern of results as PT; indicating that these time-related measures were more sensitive to joint angle effects on PT than on TPT or HRT. The results of this study indicate that careful consideration should be given to the selection of joint angles in the measurement of evoked twitch contractile properties for the purpose of making group comparisons or investigating the effects of interventions such as training.  相似文献   

10.
The purpose of this study was to determine whether neural and/or muscular factors contributed to the inferior strength-related motor performances of obese adolescents. Subjects were 10 non-obese (14.6% fat) and 11 obese (32.3% fat) males matched for age (15-18 years), level of maturity (Tanner stages IV and V), lean body mass, and height. Peak torque (PT) was measured during maximal voluntary isometric (IS) and isokinetic (IK) knee extension (KE). Peak twitch torque (TT), time to peak torque (TPT), and half-relaxation time (HRT) of the knee extensors were elicited by percutaneous electrical stimulation. The interpolated twitch technique was used to determine the extent of motor unit activation (% MUA) during maximal voluntary IS KE. Knee extensor cross-sectional area (CSA) was determined by computed axial tomography taken at the mid-thigh. All strength and area measurements were made on the right side of the body. Obese subjects had significantly (P less than 0.05) lower maximal voluntary IS and IK KE strength normalized for body weight, and significantly lower % MUA during IS KE. There were no significant differences (P greater than 0.05) between groups for absolute or normalized (for the product of muscle CSA and height) ISPT, IKPT, and TT, knee extensor CSA, or TPT and HRT. These results suggest that reduced MUA and a lower strength per mass ratio (due to excess fat) are probably important contributing factors to the poorer motor performances of the obese, especially for complex motor tasks involving large muscle groups and the support or moving of body weight.  相似文献   

11.
The aim of the current study was to examine the relationships between quadriceps torque, vastus lateralis pennation angle (theta), and patella tendon stiffness (K) at 07:45 and 17:45 h. Using short-duration static contractions, simultaneous recordings were made of vastus lateralis (VL) electromyograph (EMG), theta and patella tendon K. Peak isometric extension torque (Peak torque Ext(corr)) increased by 29.4+/-6.5% at a knee angle of 70 degrees (p=0.03) in the evening compared to the morning. In the contracted muscle, a 35.0+/-11.0% (p=0.02) time-of-day (TOD)-related change in theta (to a greater evening compared to morning theta) was observed. Morning and evening measures of theta were also made, both at rest and at a standardized force level (250 N), to separate architecture change effects from increased torque capacity effects. Significant increments in theta in both the resting muscle (13.0+/-5.1%, p=0.046) and during the standardized exertions (8.0+/-3.1%, p=0.04) were observed in the evening versus the morning. Increases in theta with TOD were significantly correlated with the 40% (p=0.018) decrease in K both during the standardized contractions (r=0.788, p<0.001) and at rest (r=0.77, p=0.026). These data show that TOD affects K and theta and that these two important factors involved in in-vivo muscle torque generation capacity are associated. The data also show that despite the potentially deleterious effects of the direction of the changes in both K and theta with TOD, peak torque Ext(corr) still shows a significant upward shift in the evening relative to the morning.  相似文献   

12.
This study compared resistance-trained and untrained men for changes in commonly used indirect markers of muscle damage after maximal voluntary eccentric exercise of the elbow flexors. Fifteen trained men (28.2 +/- 1.9 years, 175.0 +/- 1.6 cm, and 77.6 +/- 1.9 kg) who had resistance trained for at least 3 sessions per week incorporating exercises involving the elbow flexor musculature for an average of 7.7 +/- 1.4 years, and 15 untrained men (30.0 +/- 1.5 years, 169.8 +/- 7.4 cm, and 79.9 +/- 4.4 kg) who had not performed any resistance training for at least 1 year, were recruited for this study. All subjects performed 10 sets of 6 maximal voluntary eccentric actions of the elbow flexors of one arm against the lever arm of an isokinetic dynamometer moving at a constant velocity of 90 degrees .s. Changes in maximal voluntary isometric and isokinetic torque, range of motion, upper arm circumference, plasma creatine kinase activity, and muscle soreness before, immediately after, and for 5 days after exercise were compared between groups. The trained group showed significantly (P < 0.05) smaller changes in all of the measures except for muscle soreness and faster recovery of muscle function compared with the untrained group. For example, muscle strength of the trained group recovered to the baseline by 3 days after exercise, where the untrained group showed approximately 40% lower strength than baseline. These results suggest that resistance-trained men are less susceptible to muscle damage induced by maximal eccentric exercise than untrained subjects.  相似文献   

13.
Stress fractures are a common and serious overuse injury in runners, particularly female runners. They may be related to loading characteristics of the lower extremity during running stance. Some tibial stress fractures (TSFs) are spiral in nature and, therefore, may be related to torque. Free moment (FM) is a measure of torque about a vertical axis at the interface with the shoe and ground. Increases in FM variables may be related to a history of TSF in runners. The purpose of this cross-sectional study was to investigate differences in FM between female distance runners with and without a history of TSF and, additionally, to investigate the relationship between absolute FM and the occurrence of TSF. A group of 25 currently uninjured female distance runners with a history of TSF (28+/-10 years, 46+/-15 km week(-1)) and an age- and mileage-matched control group of 25 healthy runners with no previous lower extremity fractures (26+/-9 years, 46+/-19 km week(-1)) participated in this study. Ground reaction forces and foot placement on the force platform were recorded during running at 3.7 ms(-1) (+/-5%). Peak adduction, braking peak and absolute peak FM and impulse were compared between groups using one-tailed t-tests. The predictive value of absolute peak FM was investigated via a binary logistic regression. All variables, except impulse, were significantly greater in runners with a history of TSF. Absolute peak FM had a significant predictive relationship with history of TSF. There is a significant relationship between higher values for FM variables and a history of TSF.  相似文献   

14.
To determine upper body peak O2 uptake (VO2) in a group of young females and to obtain information on possible sex differences, 40 subjects, 20 females and 20 males, mean age 26 +/- 4 (SD) and 31 +/- 6 yr, respectively, were studied during maximal arm-cranking exercise. Peak values for power output, VO2, minute ventilation (VE), and heart rate (HR) were determined for each subject. In addition, arm-shoulder volume (A-SV) was measured before exercise. Significant differences between males and females (P less than 0.05) were found for peak power output (134 +/- 18 vs. 86 +/- 13 W), peak VO2 expressed in liters per minute (2.55 +/- 0.45 vs. 1.81 +/- 0.36) and milliliters per kilogram per minute (34.2 +/- 5.3 vs. 29.2 +/- 4.9), peak VE (95.4 +/- 14.5 vs. 70.1 +/- 19.2 1 X min-1), and A-SV (3,126 +/- 550 vs. 2,234 +/- 349 ml), whereas peak HR was not significantly different between the two groups (174 +/- 14 vs. 174 +/- 36 beats X min-1). However, when peak VO2 was corrected for arm and shoulder size there was no significant difference between the groups (0.82 +/- 0.13 vs. 0.78 +/- 0.13 ml X ml A-SV-1 X min-1). These results suggest that the observed differences between men and women for peak VO2 elicited during arm cranking when expressed in traditional terms (1 X min-1 and ml X kg-1 X min-1) are a function of the size of the contracting muscle mass and are not due to sex-related differences in either O2 delivery or the O2 utilization capacity of the muscle itself.  相似文献   

15.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

16.
Twitch contractile and ultrastructural characteristics of the human triceps surae were determined in six male strength-trained athletes, six endurance-trained athletes, six active controls, and seven sedentary controls of similar height and age. Twitch contraction time in the triceps surae complex was 20% longer in strength-trained and sedentary groups than in endurance-trained or active control groups. In the 15 subjects peak twitch torque and one-half relation time in the triceps surae were 22.6 +/- 7.9 N.m and 91.1 +/- 18.3 ms, respectively. Mean fiber area in the gastrocnemius was approximately 1.6-, 1.7-, and 2.5-fold greater in the active control, endurance-trained, and strength-trained groups, respectively, relative to the sedentary group. Despite these large differences in fiber areas, the fiber fractional volume of the sarcoplasmic reticulum-transverse tubule network averaged 3.38 +/- 0.86% and 5.50 +/- 0.94% in type I and type II fibers, respectively, in all subjects. The fractional fiber volume of cytoplasm and lipid were similar for all four groups. However, mitochondrial volume was approximately 30% lower in both fiber types of the strength-trained group relative to the other groups. This implies that with exercise-induced hypertrophy, the sarcoplasmic reticulum, cytoplasm, and lipid components increase proportionately with contractile protein, whereas the mitochondrial fraction does not. The proportion of type I fibers in the soleus, medial gastrocnemius, and lateral gastrocnemius was 75.2 +/- 8.3, 58.5 +/- 6.1, and 52.4 +/- 4.2%, respectively, and was similar in all subject groups. The results demonstrate that twitch duration is prolonged in strength-trained athletes relative to endurance athletes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

18.
The relation between sarcomere length, tension and time course of tension development in twitch and tetanic contractions at 20 degrees C was determined for isolated fibres from the semitendinosus muscle of the frog (Rana esculenta). In twenty fibres at about 2.15 micron sarcomere length, the peak twitch tension, the maximum tetanic tension and the twitch/tetanus ratio ranged, respectively, from 0.22 to 1.6 kg/cm2, from 2.13 o 3.96 kg/cm2 an from 0.07 to 0.53. The peak twitch tension was found to be: i) directly correlated with the twitch/tetanus ratio and the time to the peak of the first derivative of the twitch tension, ii) inversely correlated with the time to the peak of the first derivative of tetanic tension. No significant correlation was found between the maximal tetanic tension and the peak twitch tension or the twitch/tetanus ratio. Peak twitch tension and twitch/tetanus ratio were not correlated with the fibre cross-sectional area which ranged from 1.052 to 6,283 micron2. Sarcomere length-tension curves for twitch and tetanic isometric contractions at 20 degrees C were determined in twelve fibres. Increases in sarcomere length from about 2.15 to 2.85 micron produced, depending on the peak twitch tension or the twitch/tetanus ratio at about 2.15 micron, either decrease and no change or increase in peak twitch tension, but constantly enhanced the twitch/tetanus ratio and the degree of this potentiation was inversely correlated with the twitch/tetanus ratio at 2.15 micron. Increase in sarcomere length above 2.15 micron did not alter the course of the early development of twitch and tetanic tensions, reduced considerably the variation in peak twitch tension and twitch/tetanus ratio, without altering that of tetanic tension and swamped the correlation between the peak twitch tension and the time to peak of the differentiated twitch tension. However, the peak twitch tension at about 2.85 micron resulted to be directly correlated with the peak twitch tension at about 2.15 micron and in addition the relative length-dependent change in the time of the peak of the first derivative of the twitch tension resulted to be directly correlated with the relative length-dependent change in the peak twitch tension. It is concluded that both the duration of the active state and the rate factors of activation contribute to the determining of the large variation in peak twitch tension at about 2.15 micron, whereas the length-dependent increase in twitch/tetanus ratio appears to be mainly determined by prolongation of the active state duration.  相似文献   

19.
Specificity of joint angle in isometric training   总被引:1,自引:0,他引:1  
Six healthy women (21.8 +/- 0.4 y) did isometric strength training of the left plantarflexors at an ankle joint angle of 90 degrees. Training sessions, done 3 times per week for 6 weeks, consisted of 2 sets of ten 5 s maximal voluntary contractions. Prior to and following the training, and in random order, voluntary and evoked isometric contraction strength was measured at the training angle and at additional angles: 5 degrees, 10 degrees, 15 degrees, and 20 degrees intervals in the plantarflexion and dorsiflexion directions. Evoked contraction strength was measured as the peak torque of maximal twitch contractions of triceps surae. Training increased voluntary strength at the training angle and the two adjacent angles only (p less than 0.05). Time to peak twitch torque was not affected by training. Twitch half relaxation time increased after training (p = 0.013), but the increase was not specific to the training angle. There was a small (1.1%, p less than 0.05) increase in calf circumference after training. Evoked twitch torque did not increase significantly at any joint angle. It was therefore concluded that a neural mechanism is responsible for the specificity of joint angle observed in isometric training.  相似文献   

20.
Variable stiffness shoes that have a stiffer lateral than medial sole may reduce the external knee adduction moment (EKAM) and pain during walking in patients with medial compartment knee osteoarthritis (OA). However, the mechanism by which EKAM may be reduced in the OA knee with this intervention remains unclear. Three hypotheses were tested in this study: (1) The reduction in EKAM during walking with the variable stiffness shoe is associated with a reduction in GRF magnitude and/or (2) frontal plane lever arm. (3) A reduction in frontal plane lever arm occurs either by moving the center of pressure laterally under the shoe and/or by dynamically reducing the medial component of GRF. Thirty-two subjects (20 male, 12 female; age: 58.7 ± 9.3 years; height: 1.62 ± 0.08 m; mass: 81.3 ± 14.6 kg) with medial compartment knee osteoarthritis were studied walking in a gait laboratory. The frontal plane lever arm was significantly reduced (1.62%, 0.07%ht, p=0.02) on the affected side while the magnitude of the GRF was not significantly changed. The reduction in the lever arm was weakly correlated with a medial shift in the COP. However, the combined medial shift in the COP and reduction in the medial GRF explained 50% of the change of the frontal plane lever arm. These results suggest that the medial shift in the COP at the foot produced by the intervention shoe stimulates an adaptive dynamic response during gait that reduces the frontal plane lever arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号