首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prompted by the fact that the urinary excretion of organic acids in the riboflavin-deficient rat closely mimics that found in patients with inborn errors in the acyl-CoA dehydrogenation systems, the organelle localization and the apparent kinetic constants (Km and Vmax values) for the rat liver acyl-CoA:glycine-N-acyltransferase (glycine-N-acylase) toward isobutyryl-CoA, 2-methylbutyryl-CoA, isovaleryl-CoA, butyryl-CoA, hexanoyl-CoA, octanoyl-CoA, decanoyl-CoA, and benzoyl-CoA were determined. The studies on organelle localization demonstrated that the glycine-N-acylase is exclusively an intramitochondrial enzyme, and that no activity is present in peroxisomes, which also possess ability to produce Acyl-CoAs. The kinetic studies were done in order to elucidate whether the quantitative differences in excretion profile of acylglycines between riboflavin-deficient rats and patients with beta-oxidation defects are caused by differences in ability to conjugate the various acyl-CoAs. It was found that the Km values for the rat liver enzyme were generally somewhat lower than the values found in man, but with the same chain length profile. Consequently, the above-mentioned differences in excretion profile of acylglycines between riboflavin-deficient rats and patients with beta-oxidation defects cannot be explained by differences in affinity toward the glycine-N-acylase.  相似文献   

2.
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT (hBACAT) and identifying BACAT as a member of the type I acyl-CoA thioesterase gene family. We therefore hypothesized that hBACAT may also hydrolyze fatty acyl-CoAs and/or conjugate fatty acids to glycine. We show here that recombinant hBACAT also can hydrolyze long- and very long-chain saturated acyl-CoAs (mainly C16:0-C26:0) and by mass spectrometry verified that hBACAT also conjugates fatty acids to glycine. Tissue expression studies showed strong expression of BACAT in liver, gallbladder, and the proximal and distal intestine. However, BACAT is also expressed in a variety of tissues unrelated to bile acid formation and transport, suggesting important functions also in the regulation of intracellular levels of very long-chain fatty acids. Green fluorescent protein localization experiments in human skin fibroblasts showed that the hBACAT enzyme is mainly cytosolic. Therefore, the cytosolic BACAT enzyme may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids.  相似文献   

3.
Two closely related acyl-CoA:amino acid N-acyl-transferases were purified to near-homogeneity from preparations of bovine liver mitochondria. Each enzyme consisted of a single polypeptide chain with a molecular weight near 33,000. One transferase was specific for benzoyl-CoA, salicyl-CoA, and certain short straight and branched chain fatty acyl-CoA esters as substrates while the other enzyme specifically used either phenylacetyl-CoA or indoleacetyl-CoA. Acyl-CoA substrates for one transferase inhibited the other. Glycine was the preferred acyl acceptor for both enzymes but either L-asparagine or L-glutamine also served. Peptide products for each transferase were identified by mass spectrometry. Enzymatic cleavage of acyl-CoA was stoichiometric with release of thiol and formation of peptide product. Apparent Km values were low for the preferred acyl-CoA substrates relative to the amino acid acceptors (10(-5) M range compared to greater than 10(-3) M). Both enzymes were inhibited by high nonphysiological concentrations of certain divalent cations (Mg2+, Ni2+, and Zn2+). In contrast to benzoyltransferase, phenylacetyltransferase was sensitive to inhibition by either 10(-4) M 5,5'-dithiobis(2-nitrobenzoate) or 10(-5) M p-chloromercuribenzoate; 10(-4) M phenylacetyl-CoA partially protected phenylacetyltransferase against 5,5'-dithiobis(2-nitrobenzoate) inactivation but 10(-1) M glycine did not. For activity, phenylacetyltransferase required addition of certain monovalent cations (K+, Rb+, Na+, Li+, Cs+, or (NH4)+) to the assay system but benzoyltransferase did not. Preliminary kinetic studies of both transferases were consistent with a sequential reaction mechanism in which the acyl-CoA substrate adds to the enzyme first, glycine adds before CoA leaves, and the peptide product dissociates last.  相似文献   

4.
The arylacetyl acyl-CoA:amino acid N-acyltransferase was previously purified to homogeneity from bovine liver mitochondria, and partial sequences were obtained for peptides generated by cyanogen bromide cleavage of the enzyme. One of these sequences was used to design an oligonucleotide probe that was utilized to screen a bovine liver cDNA library. Several clones were isolated and sequenced, and the sequence is given. The cDNA contains 346 bases of 5′-untranslated region and 439 bases of 3′ untranslated region. The cDNA codes for an enzyme containing 295 amino acid residues. The sequence gives a molecular weight for the enzyme of 38,937, which is larger than that previously estimated for the functional enzyme, which suggests the existence of ca. 5 kDA of signal peptide. The molecular weight of the enzyme was slightly lower than that of the aralkyltransferase, which was previously determined to be 39,229. Comparison of this sequence with that which we previously obtained for the aralkyltransferase indicated that the coding regions were of identical length and that the sequences were 78% homologous. However, the 5′ and 3′ untranslated regions had less than 29% homology. The derived amino acid sequences were 71% homologous. This high homology indicates a common origin for the two enzymes. There are, however, significant differences in amino acid compositions, and these are discussed. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 275–279, 1998  相似文献   

5.
The aralkyl acyl-CoA:amino-acid N-acyl-transferase was previously purified to homogeneity from bovine liver mitochondria. The N-terminal amino-acid sequence and sequences obtained by cyanogen bromide cleavage of the enzyme were used to design oligonucleotide probes that were used to screen a bovine liver cDNA library. Several clones were isolated and sequenced, and the sequence is given. The cDNA contains 126 bases of 5′-untranslated region and 188 bp of 3′ untranslated region. The cDNA codes for an enzyme containing 295 amino-acid residues. The sequence gives a molecular weight for the enzyme of 39,229, which is larger than previously estimated. The amino-acid composition of the enzyme, based on this sequence, is in agreement with the previously obtained amino-acid analysis on the purified kidney enzyme. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.  相似文献   

7.
The relative importance of the liver and kidney for glycine conjugation of ortho-substituted benzoic acids was investigated. Glycine conjugation of ortho-substituted benzoic acids was investigated in mouse liver and kidney mitochondria. The extent of glycine conjugation of benzoic acids with the halogen group decreased in the order F > Cl > Br > I. The conjugation of salicylic acid with glycine took place in only the kidney. 2-Methoxybenzoic acid exhibited no activity in the liver and kidney. The difference in glycine conjugation of ortho-substituted benzoic acids was observed between liver and kidney. The kidney was more active in glycine conjugation of ortho-substituted acids than the liver. In addition, the relationship between glycine conjugation and the chemical structure of ortho-substituted acids was examined in the liver and kidney. The size of the substituent had a far greater influence over glycine conjugation in the liver and kidney. Glycine conjugation was also dependent on the substituent electronegativity. It may be important that the substrates undergoing glycine conjugation contain a flat region coplanar to the carboxylate group.  相似文献   

8.
Human glycine N-acyltransferase (human GLYAT) detoxifies a wide range of endogenous and xenobiotic metabolites, including benzoate and salicylate. Significant inter-individual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. To investigate the influence of single nucleotide polymorphisms (SNPs) in the GLYAT coding sequence on enzyme activity, we expressed and characterised a recombinant human GLYAT. Site-directed mutagenesis was used to generate six non-synonymous SNP variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. We also generated an E227Q mutant, which lacks the catalytic residue proposed by Badenhorst et al. (2012). This mutant was inactive compared to the wild-type recombinant human GLYAT. A molecular model of human GLYAT containing coenzyme A (CoA) was generated which revealed that the inactivity of the R199C variant could be due to the substitution of the highly conserved Arg199 and destabilisation of an α-loop-α motif which is important for substrate binding in the GNAT superfamily. The finding that SNP variations in the human GLYAT gene influence the kinetic properties of the enzyme may explain some of the inter-individual variation in glycine conjugation capacity, which is relevant to the metabolism of xenobiotics such as aspirin and the industrial solvent xylene, and to the treatment of some metabolic disorders.  相似文献   

9.
The bile acid-conjugating enzyme, bile acid-CoA: amino acid N-acyltransferase, was purified 480-fold from the soluble fraction of homogenized frozen human liver. Purification was accomplished by a combination of anion exchange chromatography, chromatofocusing, glycocholate-AH-Sepharose affinity chromatography, and high performance liquid chromatography (HPLC) gel filtration. Following purification, the reduced, denatured enzyme migrated as a single 50-kDa protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar molecular mass was obtained for the native enzyme by HPLC gel filtration. Elution from the chromatofocusing column suggested an apparent isoelectric point of 6.0 (+/- 0.2). Using a rabbit polyclonal antibody raised against the purified enzyme, Western blot analysis using 100,000 x g human liver supernatant confirmed that the affinity-purified polyclonal antibody was specific for human liver bile acid-CoA:amino acid N-acyltransferase. The purified enzyme utilized glycine, taurine, and 2-fluoro-beta-alanine (a 5-fluorouracil catabolite), but not beta-alanine, as substrates. Kinetic studies revealed apparent Km values for taurine, 2-fluoro-beta-alanine, and glycine of 1.1, 2.2, and 5.8 mM, respectively, with corresponding Vmax values of 0.33, 0.19, and 0.77 mumol/min/mg protein. These data demonstrate that a single monomeric enzyme is responsible for the conjugation of bile acids with glycine or taurine in human liver.  相似文献   

10.
Glycine conjugation of a series of benzoic acid derivatives was investigated in mouse kidney mitochondria. The chlorine and methyl substitutions in the para- and meta-positions of the benzene ring yielded an increase in glycine conjugation. The acids with a methoxy group showed a low degree of glycine conjugation. In addition, the acids with nitro or amino groups were conjugated to a slight extent with glycine. The in vitro conjugation of salicylic acid with glycine occurred not in liver but in kidney. The specificity of the renal medium chain acyl-CoA synthetase catalyzing the first reaction of glycine conjugation was also examined. The enzyme accepted not only medium chain fatty acids but also aromatic and arylacetic acids. The highest activity was shown with hexanoic acid. High activities were observed for benzoic acid derivatives with alkyl and alkoxyl groups in the para- and meta-positions of the benzene ring. An ortho-substituted acid exhibited no activity. In addition, the enzyme was less active with valproic acid, tranexamic acid, indomethacin and ketoprofen. The enzyme was inhibited by diflunisal, 2-hydroxydodecanoic acid and salicylic acid, which did not act as substrates. There was a poor correlation between the activity of the medium chain acyl-CoA synthetase and glycine conjugation of eleven substituted benzoic acids. These findings suggest that the present medium chain acyl-CoA synthetase is involved in glycine conjugation of the substituted acids in mouse kidney mitochondria, but there may be a larger contribution of another isoenzyme.  相似文献   

11.
We recently reported the expression and activity of several fatty acid oxidation enzymes in human embryonic and fetal tissues including brain and spinal cord. Liver and heart showed expression of both very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) mRNA. However, while mRNA expression of LCHAD could be clearly detected in the retina and spinal cord, expression of VLCAD mRNA was low to undetectable in these tissues. Nevertheless, abundant acyl-CoA dehydrogenase (ACAD) activity was detected with palmitoyl-CoA as substrate in fetal central nervous tissue. These conflicting data suggested the presence of a different long-chain ACAD in human embryonic and fetal brain. In this study, using in situ hybridization as well as enzymatic studies, we identified acyl-CoA dehydrogenase 9 (ACAD 9) as the long-chain ACAD in human embryonic and fetal central nervous tissue. Until now, no clinical signs and symptoms of central nervous system involvement have been reported in VLCAD deficiency. A novel long-chain FAO defect, i.e., ACAD 9 deficiency with only central nervous system involvement, could, if not lethal during intra uterine development, easily escape proper diagnosis, since probably no classical signs and symptoms of FAO deficiency will be observed. Screening for ACAD 9 deficiency in patients with undefined neurological symptoms and/or impairment in neurological development of unknown origin is necessary to establish if ACAD 9 deficiency exists as a separate disease entity.  相似文献   

12.
《Life sciences》1995,57(26):PL407-PL412
Studies have been performed with human liver microsome preparations in vitro, to investigate the reaction mechanisms involved in the conversion of acitretin to the corresponding ethyl ester, etretinate. The results indicate that:Three fresh samples of human liver, which had been stored in liquid nitrogen for up to 8 months, all produced traces of etretinate (5.8 ± 0.8 >ng/ml) in the presence of ethanol but not when the acitretin was added in acetone, or when the sample was denatured by preheating.Studies with pooled human liver microsomes, to identify the cellular location of the enzymes and the co-factors involved in this esterification, indicate a primary requirement for both ethanol and CoA + ATP with a secondary potentiation in the presence of an NADPH regenerating system.A possible explanation for these finding is that the microsomal ligase enzymes form an intermediate ester between CoA and acitretin, which is then trans-esterified by the ethanol. The low formation with CoA + ATP may indicate that second stage of this process occurs spontaneously, with the NADPH potentiation suggesting that it could also be mediated enzymically.  相似文献   

13.
14.
The ontogenic development of glycine N-acyltransferase activity was studied in preparations of hepatic and renal mitochondria from the New Zealand White rabbit and the Sprague-Dawley rat. Preparations of hepatic mitochondria from the rat and the rabbit attain adult glycine N-acyltransferase specific activities by birth and 4 weeks of age respectively, whereas mitochondrial preparations from rabbit kidney do not attain adult activity until 4 months of age. Pretreatment of adult rats or immature rabbits with salicylic acid, benzoic acid or phenobarbital had little effect on glycine N-acyltransferase activity in vitro in liver or kidney.  相似文献   

15.
Biosynthesis of wax esters, one of the two major products of the meibomian gland, was found to be catalyzed mainly by the microsomes of the bovine meibomian gland. The microsomal preparation catalyzed hexadecanoyl-CoA reduction to hexadecanol without any accumulation of the aldehyde intermediate. Maximal rates of reduction occurred at pH 6.5 and required both NADH and NADPH; the latter alone gave considerable rates whereas NADH alone was ineffective. Exogenous hexadecanal reduction catalyzed by the same preparation showed a preference for NADH. The hexadecanoyl-CoA saturation pattern was slightly sigmoidal and concentrations higher than 125 microM inhibited reduction. The fatty alcohol generated from hexadecanoyl-CoA was found as free alcohol and as wax esters. Esterification of hexadecanol to wax esters catalyzed by the meibomian gland microsomal preparation required exogenous acyl-CoA or ATP and CoA and was not affected by exogenous cholesterol. Maximal rates of esterification were observed at neutral pH. Hexadecanoyl-CoA concentrations higher than 125 microM inhibited esterification. Hexadecanol showed a typical substrate saturation pattern with an apparent Km of 125 microM. Radio gas-liquid chromatography showed that, in the presence of exogenous hexadecanoyl-CoA, hexadecanol gave hexadecyl hexadecanoate whereas in the presence of ATP and CoA both C16 and C18 endogenous acids were used to esterify the alcohol. Consistent with the composition of the meibomian gland secretion, exogenous acyl-CoA longer than C14 and shorter than C20 gave maximal rates of esterification of hexadecanol.  相似文献   

16.
  • 1.1. Conjugation of Tetrahymena enhanced the incorporation of glycine into the nuclear fraction by 500%.
  • 2.2. Incorporation of glycine into the microsomal supernatant was augmented by almost 500% by conjugation.
  • 3.3. Mitochondrial incorporation was stimulated nearly 3-fold in the conjugating strains while the incorporation of glycine into the microsomes was enhanced approximately 2.5 times.
  • 4.4. In the whole cell, glycine incorporation was increased nearly 2-fold by conjugation.
  • 5.5. Strong nuclear involvement was indicated by elevated metabolic activity and incorporation of glycine into RNA and DNA.
  • 6.6. Stimulation of the metabolism of Tetrahymena by cell communication suggests that the contents of a cell can have a synergistic effect on another cell.
  • 7.7. Augmentation of the biosynthetic capacities of cells by fusion is a demonstration of the dominant role of the cell membrane in the regulation and control of cells.
  • 8.8. Enhancement of biosynthesis of nuclear proteins in conjugating strains of cells indicates that fusion gives rise to the synthesis of new protein from previously existing protein or protein procursors.
  • 9.9. The specific activities of the subcellular fractions after the incorporation of glycine into 2 separated starved strains of Tetrahymena followed the usual pattern of nucleus less than whole cells, whole cells less than mitochondria, mitochondria less than microsomes, but with the microsomal supernatant being much greater than that of the microsomes.
  相似文献   

17.
These studies were carried out to determine whether bovine serum albumin (BSA), which is usually included in the incubation mixture for the in vitro determination of bilirubin-UDP-glucuronyl transferase (GT) activity, affects GT activity. Using bilirubin as substrate, addition of BSA to the enzyme reaction mixture at concentrations varying from 2 to 30 mg/ml resulted in a dose-related inhibition of "native" GT activity of rat liver microsomes. When detergent-activated enzyme was employed, increasing concentrations of BSA also required higher concentrations of deoxycholate, digitonin, or Triton X-100 to produce maximal bilirubin conjugation. Low BSA concentrations (2 mg/ml) prevented enzyme activation by both detergents and UDP-N-acetyl glucosamine. When BSA was omitted and bilirubin dissolved in dimethyl sulfoxide, UDP-N-acetyl glucosamine failed to enhance GT activity, and activation by detergents was only 15-25% of that observed in the presence of optimal concentrations of BSA. When rat albumin was substituted for BSA, a similar dose-related inhibition of in vitro bilirubin conjugation by untreated microsomes was observed, although at any given albumin concentration, GT activity was lower with rat than with bovine albumin. Additionally, both detergents and UDP-N-acetyl glucosamine produced similar GT activation regardless of the rat albumin concentration. Finally, these effects of BSA and rat albumin could not be reproduced when beta-lactoglobulin was employed and/or when p-nitrophenol was the acceptor substrate of GT. These findings indicate that albumin, in particular BSA, profoundly and selectively influences the in vitro activity of microsomal GT toward bilirubin as the acceptor substrate.  相似文献   

18.
19.
20.
The hepatic enzyme bile acid CoA:amino acid N-acyltransferase (BAT) catalyzes the formation of amino acid-conjugated bile acids. In the present study, protein carbonylation of BAT, consistent with modification by reactive oxygen species and their products, was increased in hepatic homogenates of apolipoprotein E knock-out mice. 4-Hydroxynonenal (4HNE), an electrophilic lipid generated by oxidation of polyunsaturated long-chain fatty acids, typically reacts with the amino acids Cys, His, Lys, and Arg to form adducts, some of which (Michael adducts) preserve the aldehyde (i.e., carbonyl) moiety. Because two of these amino acids (Cys and His) are members of the catalytic triad of human BAT, it was proposed that 4HNE would cause inactivation of this enzyme. As expected, human BAT (1.6 microM) was inactivated by 4HNE in a dose-dependent manner. To establish the sites of 4HNE's reaction with BAT, peptides from proteolysis of 4HNE-treated, recombinant human BAT were analyzed by peptide mass fingerprinting and by electrospray ionization-tandem mass spectrometry using a hybrid linear ion trap Fourier transform-ion cyclotron resonance mass spectrometer. The data revealed that the active-site His (His362) dose-dependently formed a 4HNE adduct, contributing to loss of activity, although 4HNE adducts on other residues may also contribute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号