首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated that endogenous cytokines including gamma interferon (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) play protective roles but that IL-4 and IL-10 play detrimental roles in nonlethal Listeria monocytogenes infection in mice. In this paper, we studied the roles of endogenous cytokines in a lethal infection with L. monocytogenes in mice. TNF-alpha and IL-6 titres in the bloodstreams, spleens and livers paralleled bacterial numbers in the organs, and both these cytokines and the bacterial numbers peaked just before the mice died. The high titres of TNF-alpha notably detected in the circulation in lethal infection were different from those in nonlethal infection. The maximum production of IFN-gamma was observed before the peaks of TNF-alpha and IL-6, and IFN-gamma almost disappeared from the bloodstreams and organs just before the mice died. No notable difference of IFN-gamma titres between lethal infection and nonlethal infection in the specimens obtained from mice was observed. IL-10 was also detected in the bloodstreams earlier than the peaks of TNF-alpha and IL-6 during lethal infection, while IL-4 was never detected in the sera. The administration of monoclonal antibodies (mAbs) against TNF-alpha, IFN-gamma, IL-6, IL-4 or IL-10 failed to rescue mice from lethal L. monocytogenes infection, whereas anti-TNF-alpha mAb and anti-IFN-gamma mAb prevented mice from lethality by high-dose endotoxin shock. These results suggest that lethality in L. monocytogenes infection might not be determined solely by these cytokines.  相似文献   

2.
A water-soluble oligosaccharide, N-acetyl chitohexaose (NACOS-6) was able to enhance the protecting effect of BALB/c male mice against Listeria monocytogenes infection, when administered intraperitoneally 24 hr before the challenge with this microbe. Significant decrease in number of microbes within the peritoneal cavity, spleen, and liver from the mice of NACOS-6-administered group was not observed 1 day after the infection but 4 days after the infection. Administration of NACOS-6 enhanced the delayed-type hypersensitivity response against sheep red blood cells (SRBC) or heat-killed L. monocytogenes. Splenic T lymphocytes from mice administered NACOS-6 released macrophage activating factor (MAF). These results suggested that NACOS-6 was also able to elevate the function of cellular immunity. Macrophages treated with a combination of NACOS-6 and the culture supernatant of splenic T lymphocytes from mice administered NACOS-6, "NACOS-6 sup," were found to exert a fairly strong growth-inhibitory effect on L. monocytogenes. Interferon-gamma (IFN-gamma) and interleukin 2 (IL-2) were able to enhance the growth-inhibitory effect on L. monocytogenes by the NACOS-6-treated macrophages.  相似文献   

3.
Abstract The effects of dexamethasone (DEX) on a lethal infection with Listeria monocytogenes were studied in mice. Mice were completely protected against the lethal infection when treated with 3.3 mg per kg of DEX. The effect was observed only when DEX was injected before infection. The control mice died from day 3 to day 5 of infection, whereas DEX-treated mice could eliminate L. monocytogenes cells from the organs by day 11 of infection. High titres of endogenous tumour necrosis factor (TNF), interleukin-6 (IL-6) and gamma interferon (IFN-γ) were induced in the bloodstreams and organs of the drug-free mice. DEX suppressed IL-6 production, but augmented TNF and IFN-γ production within 24 h of infection, whereas production of all three endogenous cytokines was suppressed in the DEX-treated mice on day 3 of infection when the control mice began to die. These results suggest that DEX shows a protective effect on a lethal infection with L. monocytogenes in mice and that regulation of production of endogenous cytokines might be involved in the effect of DEX.  相似文献   

4.
Mice that received a sublethal, intraperitoneal dose of viable Listeria monocytogenes, virulent strain 10403, exhibited a systemic increase in natural killer (NK) activity. The kinetics of the response differed with respect to the various effector cell populations analyzed. Resident peritoneal cells and peripheral blood leukocytes demonstrated high NK activity on Days 3, 7, and 10. Peak spleen and bone marrow NK activity was observed on Day 3, returning to normal levels by Day 7. In contrast, peritoneal exudate cells, elicited with proteose peptone, expressed enhanced NK activity for 60 days following infection with viable Listeria. Augmented NK activity was detected with all cell types as early as 12 hr after infection. The intraperitoneal injection of nonviable antigenic preparations derived from L. monocytogenes, strain 10403, resulted in the enhancement of peritoneal and splenic NK activity. In contrast, mice that received an intraperitoneal injection of avirulent Listeria, strain 19113, failed to express enhanced levels of NK activity. The genetic trait of anti-listerial resistance which is associated with non-H-2 linked genes was of no importance with respect to enhanced NK activity. Listeria-resistant C57BL/6J and Listeria-susceptible DBA/2J mice both produced systemic augmentation of NK activity following infection. NK activity was not abrogated by macrophage depletion or by treatment with anti-Thy 1.2 serum plus complement. These results confirm the potent immunostimulatory capacity of virulent Listeria for NK activity and provide further insight into the kinetics of this response in various lymphoid compartments. The protracted augmentation of NK activity of elicited peritoneal exudate cells as compared to nonelicited peritoneal cells in Listeria-primed mice suggests that the influx of inflammatory cells may provide NK-enriched and/or accessory populations for immunopotentiation of NK activity in inflammatory sites.  相似文献   

5.
Listeria monocytogenes, in doses of 2-0 X 10(3) to 3-0 X 10(3) viable organisms, was injected into athymic nude mice, irradiated mice and mice treated with reticuloendothelial system-blocking agents. Viable counts on liver and spleen homogenates were made at intervals after infection. In both nude mice (nu/nu) and normal littermates (nu/+) of BALB/c background, the bacteria grew rapidly for 24 h but increased only slowly thereafter, to reach a plateau of about 10(5) per organ at 72 h. In nu/+ mice, the number of viable bacteria began to decrease after 6 to 9 days, with complete elimination by day 12. In nude mice, the number of Listeria remained at a stable level of approximately 10(5) per organ during the observation period of 21 days. In lethally irradiated nu/+ mice, bacteria grew progressively and extensively to reach 10(7) per spleen and 10(9) per liver by 72 h. Bacterial growth during the first 72 h was markedly enhanced by treatment with carbon particles, dextran sulphate 500 or silica. These enhancing effects were also observed in nude mice and in AKR, C3H/He and C57BL/6 animals. We conclude that both non-immune phagocytes and T cell-dependent mechanisms contribute to the resistance of mice to Listeria infection.  相似文献   

6.
Various bacterial pathogens have been identified as mediators of apoptosis. Apoptosis reportedly shows both detrimental and beneficial effects on biological functions. We studied the role of liver apoptosis in lethal Listeria monocytogenes infection and the regulation of apoptosis by endogenous cytokines during infection. Apoptosis was observed in the spleen but not in the liver of infected mice, whereas the induction of liver necrosis was evident by rising levels of serum aminotransferases in these animals. Apoptosis was detected in the liver of L. monocytogenes-infected mice which had been treated with monoclonal antibody (mAb) against tumor necrosis factor-alpha (TNF-alpha) or interleukin-6 (IL-6), or in TNF-alpha(-/-) mice, but not in gamma- interferon (IFN-gamma)(-/-) mice or mice which had been treated with mAb against IL-4 or IL-10. Augmentation of liver apoptosis in mice treated with mAb against TNF-alpha or IL-6 or in TNF-alpha(-/-) mice correlated with the increase in bacterial numbers in the organ, while no augmentation of apoptosis was observed in the liver of IFN-gamma(-/-) mice irrespective of the marked increase in bacterial numbers in the organs, indicating that augmentation of liver apoptosis may not be merely due to the increase in bacterial growth in the organs. These results suggest that TNF-alpha and IL-6 may play an important role in protecting the liver from apoptosis in lethal L. monocytogenes infection.  相似文献   

7.
8.
The aryl hydrocarbon receptor (AhR) is part of a powerful signaling system that is triggered by xenobiotic agents such as polychlorinated hydrocarbons and polycyclic aromatic hydrocarbons. Although activation of the AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin or certain polycyclic aromatic hydrocarbons can lead to immunosuppression, there is also increasing evidence that the AhR regulates certain normal developmental processes. In this study, we asked whether the AhR plays a role in host resistance using murine listeriosis as an experimental system. Our data clearly demonstrate that AhR null C57BL/6J mice (AhR(-/-)) are more susceptible to listeriosis than AhR heterozygous (AhR(+/-)) littermates when inoculated i.v. with log-phase Listeria monocytogenes. AhR(-/-) mice exhibited greater numbers of CFU of L. monocytogenes in the spleen and liver, and greater histopathological changes in the liver than AhR(+/-) mice. Serum levels of IL-6, MCP-1, IFN-gamma, and TNF-alpha were comparable between L. monocytogenes-infected AhR(-/-) and AhR(+/-) mice. Increased levels of IL-12 and IL-10 were observed in L. monocytogenes-infected AhR(-/-) mice. No significant difference was found between AhR(+/-) and AhR(-/-) macrophages ex vivo with regard to their ability to ingest and inhibit intracellular growth of L. monocytogenes. Intracellular cytokine staining of CD4(+) and CD8(+) splenocytes for IFN-gamma and TNF-alpha revealed comparable T cell-mediated responses in AhR(-/-) and AhR(+/-) mice. Previously infected AhR(-/-) and AhR(+/-) mice both exhibited enhanced resistance to reinfection with L. monocytogenes. These data provide the first evidence that AhR is required for optimal resistance but is not essential for adaptive immune response to L. monocytogenes infection.  相似文献   

9.
The direct examination of the effects that fish oil diets (composed of long-chain n-3 polyunsaturated fatty acids) exert on immune system function indicates a reduction of host natural resistance to infectious diseases mainly because of a suppression of immune function generated by the fatty acids contained in this diet. Here, we evaluated the concentration of IL-12, IL-4, prostaglandin E2 and leukotriene B4 in the serum from BALB/c mice receiving four different diets. Each group was fed a diet that differed only in the source of fat: a low-fat diet (2.5% by weight), an olive oil diet (20% by weight), a fish oil diet (20% by weight) or a hydrogenated coconut oil diet (20% by weight). Mice were fed for 4 weeks and then infected with the intracellular pathogen Listeria monocytogenes. An initial reduction in the Th1-type response as a result of a decrease in IL-12p70 secretion, an inefficient action of IL-4 (Th2-type response) and no modification of pro-inflammatory lipid-mediator production could be, at least in part, the key events responsible for the inadequate elimination of L. monocytogenes from the spleens of mice fed a fish oil diet. Furthermore, our results suggest that the type of dietary lipids may affect the circulating concentration of IL-12p70 and IL-4, leading to a modulation in the protective cellular immune response to L. monocytogenes infection.  相似文献   

10.
The effect of morphine on the susceptibility of BALB/c mice to diarrheagenic Escherichia coli, Shigella flexneri, Listeria monocytogenes, Salmonella Enteritidis, Yersinia enterocolitica, was examined via the intraperitoneal inoculation. Morphine treatment increased the susceptibility to S. Enteritidis and L. monocytogenes, resulting in bacteremia and central nervous system (CNS) invasion (for L. monocytogenes), while the infection with other bacteria did not show the systemic dissemination in the morphinetreated mice. Notably, L. monocytogenes infection caused 100% mortality with a mean survival time (MST) of 1.3 days in morphine-treated mice, but untreated mice did not die. The present data suggested that individuals using heroin or treated with morphine derivatives might be at high risk for listeriosis, especially those who are immunocompromised. Recent increasing consumption of morphine may propose the necessity for further epidemiological surveillance on infectious diseases.  相似文献   

11.
12.
Epidemiological, clinical, and experimental approaches have convincingly demonstrated that host resistance to infection with intracellular pathogens is significantly influenced by genetic polymorphisms. Using a mouse model of infection with virulent Mycobacterium tuberculosis (MTB), we have previously identified the sst1 locus as a genetic determinant of host resistance to tuberculosis. In this study we demonstrate that susceptibility to another intracellular pathogen, Listeria monocytogenes, is also influenced by the sst1 locus. The contribution of sst1 to anti-listerial immunity is much greater in immunodeficient scid mice, indicating that this locus controls innate immunity and becomes particularly important when adaptive immunity is significantly depressed. Similar to our previous observations using infection with MTB, the resistant allele of sst1 prevents formation of necrotic infectious lesions in vivo. We have shown that macrophages obtained from sst1-resistant congenic mice possess superior ability to kill L. monocytogenes in vitro. The bactericidal effect of sst1 is dependent on IFN-gamma activation and reactive oxygen radical production by activated macrophages after infection, but is independent of NO production. It is possible that there is a single gene that controls common IFN-dependent macrophage function, which is important in the pathogenesis of infections caused by both MTB and L. monocytogenes. However, host resistance to the two pathogens may be controlled by two different polymorphic genes encoded within the sst1 locus. The polymorphic gene(s) encoded within the sst1 locus that controls macrophage interactions with the two intracellular pathogens remains to be elucidated.  相似文献   

13.
The effect of the iron chelator deferoxamine (DFO) on resistance to infection with Listeria monocytogenes in mice with a condition analogous to human beta-thalassemia was studied. Intraperitoneal injection of 10 mg DFO resulted in significantly increased mortality when given one, three and six days before infection with L. monocytogenes (for all three time points, p less than 0.02). There were no significant differences in hematocrit, plasma iron, or splenic iron content between the two groups of mice during these time periods. In addition, splenic counts of L. monocytogenes were not significantly higher in DFO-treated compared to saline-treated mice three days after infection. Moreover, background C57Bl/6J mice were not more susceptible to Listeria infection after receiving DFO than were saline-treated controls. In conclusion, acute administration of DFO increases the susceptibility of beta-thalassemic mice to L. monocytogenes. The effect is not seen in background mice and suggests that DFO increases susceptibility to Listeria infection only in animals with iron overload.  相似文献   

14.
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is one of several kinases activated through direct phosphorylation by p38 mitogen-activated protein kinase. MK2 regulates LPS-induced TNF mRNA translation, and targeted mutation of the MK2 gene renders mice more resistant to D-galactosamine plus LPS-induced liver damage. In the present study, we investigated the role of MK2 in immune defense against Listeria monocytogenes infection. MK2-deficient mice displayed diminished resistance to L. monocytogenes due to impaired control of bacterial growth. The increase in bacterial load in MK2(-/-) mice was associated with normal levels of IL-1 beta, IL-6, and IFN-gamma, whereas TNF production was strongly attenuated. In line, MK2-deficient bone marrow-derived macrophages showed impaired release of TNF, but not of IL-1 beta, in response to various bacterial stimuli in addition to decreased phagocytosis of fluorescence-labeled bacteria. Furthermore, spleen cells from MK2(-/-) mice displayed diminished IFN-gamma synthesis after stimulation with L. monocytogenes. In contrast, MK2 deficiency had no effect on macrophage generation of NO or on oxidative burst activity in response to L. moocytogenes. These results indicate an essential role of MK2 in host defense against intracellular bacteria probably via regulation of TNF and IFN-gamma production required for activation of antibacterial effector mechanisms.  相似文献   

15.
Over the past two decades, unsaturated fatty acids have received particular attention due to their ability to suppress immune functions. Nevertheless, suppression of immune functions also involves a reduction of host natural resistance to eliminate the infectious agents. We have analyzed the role of dietary lipids on immune functions in cells cultured with Listeria monocytogenes. Bactericidal efficiency of peritoneal cells from mice fed a fish oil diet against this bacterium was reduced and the incubation of peritoneal cells with polyunsaturated fatty acids led to similar results. The levels of superoxide radicals in the presence of L. monocytogenes increased in cells from mice fed olive oil or fish oil diets. Proteasome activity, a mechanism that participates in T cell activation, was inhibited in all of the dietary groups assayed in the presence of L. monocytogenes, but this inhibition was abolished in the presence of both MG132 (a proteasome inhibitor) and L. monocytogenes. Overall, these results underline the potential role of fatty acids in the modulation of many functions of the immune system.  相似文献   

16.
17.
Abstract Pregnant A/J mice were found to be more susceptible to the lethal effect of Listeria monocytogenes bacteria than virgin females. However, during the first four days of post-infection there was no difference in the elimination of Listeria from the spleens of pregnant and virgin mice. This suggests that the increase in the susceptibility of pregnant mice to pathogenic activity of L. monocytogenes was related to the diminution in Listeria -specific cellular reactions. Indeed, we found that non-adherent light density dendritic cells (DCs) from pregnant mice showed a marked reduction in the ability to form clusters with L. monocytogenes immune T lymphocytes and it is known that cell cluster formation between antigen presenting cells (APC) and responding T cells is required for antigen recognition as well as for cell proliferation. DCs from pregnant mice also demonstrated the decrease and an instability in the expression of H-2 class II molecules which play a crucial role in the recognition of exogenous antigens. The abnormalities demonstrated in the function of the light density dendritic cells from the spleens of pregnant mice could compromise cellular reactions to L. monocytogenes bacteria possibly resulting in increased susceptibility of pregnant mice to experimental listeriosis.  相似文献   

18.
Immunization of mice against Listeria monocytogenes   总被引:5,自引:1,他引:5       下载免费PDF全文
  相似文献   

19.
20.
Listeria monocytogenes causes listeriosis, a systemic infection which manifests as bacteremia, often complicated by meningoencephalitis in immunocompromised individuals and the elderly, and fetal‐placental infection in pregnant women. It has emerged over the past decades as a major foodborne pathogen, responsible for numerous outbreaks in Western countries, and more recently in Africa. L. monocytogenes' pathogenic properties have been studied in detail, thanks to concomitant advances in biological sciences, in particular molecular biology, cell biology and immunology. L. monocytogenes has also been instrumental to basic advances in life sciences. L. monocytogenes therefore stands both a tool to understand biology and a model in infection biology. This review briefly summarises the clinical and some of the pathophysiological features of listeriosis. In the context of this special issue, it highlights some of the major discoveries made by Pascale Cossart in the fields of molecular and cellular microbiology since the mid‐eighties regarding the identification and characterisation of multiple bacterial and host factors critical to L. monocytogenes pathogenicity. It also briefly summarises some of the key findings from our laboratory on this topic over the past years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号