首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Buarremon brush-finches represent a complex suite of populations distributed in the montane New World Tropics from Mexico south to South America. Traditional taxonomic arrangements have separated populations of this genus into three species, based on plumage variation, although plumage patterns are well known to exhibit homoplasy. We present a first detailed phylogeographic and phylogenetic study, focused on Mesoamerican populations, and signal the existence of strong differentiation among populations with a clear geographic structure. We find well differentiated clades for (1) the Sierra Madre Oriental and Sierra Madre del Sur in Oaxaca, (2) western Mexican populations, including the B. brunneinucha populations in the Sierra Madre del Sur and B. virenticeps, (3) Sierra Madre Oriental and Sierra de los Tuxtlas, (4) northern Central America, (5) southern Central America, (6) middle Central America, and (7) South America. We demonstrate a lack of concordance with plumage patterns, and argue for several additional species to be recognized in the complex.  相似文献   

2.
Most Neotropical lowland forest taxa occur exclusively on one side of the Andes despite the availability of appropriate habitat on both sides. Almost all molecular phylogenies and phylogenetic analyses of species assemblages (i.e. area cladograms) have supported the hypothesis that Andean uplift during the Late Pliocene created a vicariant barrier affecting lowland lineages in the region. However, a few widespread plant and animal species occurring in lowland forests on both sides of the Andes challenge the generality of this hypothesis. To understand the role of the Andes in the history of such organisms, we reconstructed the phylogeographic history of a widespread Neotropical flycatcher (Mionectes oleagineus) in the context of the other four species in the genus. A molecular phylogeny based on nuclear and mitochondrial sequences unambiguously showed an early basal split between montane and lowland Mionectes. The phylogeographic reconstruction of lowland taxa revealed a complex history, with multiple cases in which geographically proximate populations do not represent sister lineages. Specifically, three populations of M. oleagineus west of the Andes do not comprise a monophyletic clade; instead, each represents an independent lineage with origins east of the Andes. Divergence time estimates suggest that at least two cross-Andean dispersal events post-date Andean uplift.  相似文献   

3.
Interspecific competition might drive the evolution of ecological niches and result in pairs of formerly competing species segregating along ecological gradients following a process of character displacement. This mechanism has been proposed to account for replacement of related species along gradients of elevation in many areas of the world, but the fundamental issue of whether competition is responsible for the origin of elevational replacements has not been tested. To test hypotheses about the role of interspecific competition in the origin of complementary elevational ranges, I combined molecular phylogenetics, phylogeography, and population genetic analyses on Buarremon torquatus and B. brunneinucha (Aves, Emberizidae), whose patterns of elevational distribution suggest character displacement or ecological release. The hypothesis that elevational distributions in these species changed in opposite directions as a result of competition is untenable because: (1) a historical expansion of the range of B. brunneinucha into areas occupied by B. torquatus was not accompanied by a shift in the elevational range of the former species; (2) when B. brunneinucha colonized the range of B. torquatus, lineages of the latter distributions had already diverged; and (3) historical trends in effective population size do not suggest populations with elevational ranges abutting those of putative competitors have declined as would be expected if competition caused range contractions. However, owing to uncertainty in coalescent estimates of historical population sizes, the hypothesis that some populations of B. torquatus have declined cannot be confidently rejected, which suggests asymmetric character displacement might have occurred. I suggest that the main role of competition in elevational zonation may be to act as a sorting mechanism that allows the coexistence along mountain slopes only of ecologically similar species that differ in elevational distributions prior to attaining sympatry. The contrasting biogeographic histories of B. brunneinucha and B. torquatus illustrate how present-day ecological interactions can have recent origins, and highlights important challenges for testing the hypothesis of character displacement in the absence of data on population history and robust reconstructions of the evolution of traits and geographic ranges.  相似文献   

4.
The Andean uplift played important roles in the historical diversification of Neotropical organisms, both by producing new high-elevation habitats that could be colonized and by isolating organisms on either side of the mountains. Here, we present a molecular phylogeny of Thamnophlius antshrikes, a clade of 30 species whose collective distribution spans nearly the entirety of lowland habitats in tropical South America, the eastern slope foothills of the Andes, and the tepuis of northern South America. Our goal was to examine the role of the Andes in the diversification of lowland and foothill species. Using parsimony and Bayesian ancestral state reconstructions of a three-state distribution character (lowland-restricted, lowland-to-highland, highland-restricted), we found that the Andes were colonized twice independently and the tepuis once from lowland-restricted ancestors. Over the entire evolutionary history of Thamnophilus, the highest transition rates were between highland-restricted and lowland-to-highland distributions, with extremely low rates into and out of lowland-restricted distributions. This pattern suggests lowland-restricted distributions are limited not by physiological constraints, but by other forces, such as competition. These results highlight the need for additional comparative studies in elucidating processes associated with the colonization of high-elevation habitats and the differentiation of populations within them.  相似文献   

5.
Aim  We used inferences of phylogenetic relationships and divergence times for three lineages of highland pitvipers to identify broad-scale historical events that have shaped the evolutionary history of Middle American highland taxa, and to test previous hypotheses of Neotropical speciation.
Location  Middle America (Central America and Mexico).
Methods  We used 2306 base pairs of mitochondrial gene sequences from 178 individuals to estimate the phylogeny and divergence times of New World pitviper lineages, focusing on three genera ( Atropoides , Bothriechis and Cerrophidion ) that are broadly co-distributed across Middle American highlands.
Results  We found strong correspondence across three highland lineages for temporally and geographically coincident divergences in the Miocene and Pliocene, and further identified widespread within-species divergences across multiple lineages that occurred in the early–middle Pleistocene.
Main conclusions  Available data suggest that there were at least three major historical events in Middle America that had broad impacts on species divergence and lineage diversification among highland taxa. In addition, we find widespread within-species genetic structure that may be attributable to the climatic changes that affected gene flow among highland taxa during the middle–late Pleistocene.  相似文献   

6.
Aim To analyse the ecological patterns of distribution of the avifaunas of the Neotropical humid montane forests, by assessing the degree of habitat restriction among species through the calculation of a numerical index, analysing their relationships with adjacent habitat, and exploring the relative contribution of both higher and lower habitats in shaping the avian assemblages. Location The Neotropical humid montane forests, from Mexico to north‐western Argentina. Methods The degree of species’ restriction to the habitat was calculated through a restriction index based on published endemicity indexes. The index scores range from 0 to 1: a score of 1 indicates a totally endemic species (i.e. fully restricted to the habitat); values tending to 0 indicate a widespread species. Results In Mesoamerica, completely restricted species represent a lower proportion of the total avifauna than in South American humid montane forests; whereas species shared to other habitats showed a higher proportion of the avifauna with affinities to higher altitude forests (e.g. pine and pine‐oak forests). South America, on the other hand, holds assemblages with a high proportion of completely restricted species; species shared to other habitats showed a high proportion of taxa with affinities to lowland forests. Main conclusions The ecological distribution of the HMF's avifauna could be partitioned in three main components: the ecologically restricted avifauna, the high altitude species and, the lower altitude species, which are tightly associated to the floristic composition along the gradient. The history of formation of the HMF flora and the ecological distribution of different avian taxa suggest a common history. Finally, the restriction index allowed a detailed evaluation of the composition of avian assemblages, their degree of restriction to the habitat and of the affinities regarding adjacent habitats, as well as an accurate distinction between species richness and restricted species richness, which should be a fundamental step towards the establishment of conservation priorities.  相似文献   

7.
The 'Great American Interchange' (GAI) is recognized as having had a dramatic effect on biodiversity throughout the Neotropics. However, investigation of patterns in Neotropical avian biodiversity has generally been focused on South American taxa in the Amazon Basin, leaving the contribution of Central American taxa under-studied. More rigorous studies of lineages distributed across the entire Neotropics are needed to uncover phylogeographical patterns throughout the area, offering insights into mechanisms that contribute to overall Neotropical biodiversity. Here we use mitochondrial DNA sequence data and intensive geographical sampling from the widespread Neotropical avian genus Trogon to investigate the role of the GAI in shaping its phylogeographical history. Our results show that genetic diversity in Trogon exceeds the perceived biodiversity, and that the GAI resulted in lineage diversification within the genus. Despite greater diversity in South America, a Central American centre of origin with multiple and independent dispersals into South America is indicated. These dispersals were followed by the evolution of divergent lineages associated with the Andes Mountains and other South American geographical features. According to our phylogenetic reconstructions, several species, which were originally defined by morphological characters, are nonmonophyletic. In sum, our results elucidate the evolutionary history of Trogon , reveal patterns obscured by extant biodiversity, and serve as a biogeographical model to consider in future studies.  相似文献   

8.
The evolution of Neotropical birds of open landscapes remains largely unstudied. We investigate the diversification and biogeography of a group of Neotropical obligate grassland birds (Anthus: Motacillidae). We use a multilocus phylogeny of 22 taxa of Anthus to test the hypothesis that these birds radiated contemporaneously with the development of grasslands in South America. We employ the R package DDD to analyze the dynamics of Anthus diversification across time in Neotropical grasslands, explicitly testing for shifts in dynamics associated with the Miocene development of grasslands, the putative Pleistocene expansion of arid lowland biomes, and Pleistocene sundering of Andean highland grasslands. A lineage‐through‐time plot revealed increases in the number of lineages, and DDD detected shifts to a higher clade‐level carrying capacity during the late Miocene, indicating an early burst of diversification associated with grassland colonization. However, we could not corroborate the shift using power analysis, probably reflecting the small number of tips in our tree. We found evidence of a divergence at ~1 Mya between northern and southern Amazonian populations of Anthus lutescens, countering Haffer's idea of Pleistocene expansion of open biomes in the Amazon Basin. We used BioGeoBears to investigate ancestral areas and directionality of colonization of Neotropical grasslands. Members of the genus diversified into, out of, and within the Andes, within‐Andean diversification being mostly Pleistocene in origin.  相似文献   

9.
Arbeláez‐Cortés, E., Navarro‐Sigüenza, A. G. & García‐Moreno J. (2012). Phylogeny of woodcreepers of the genus Lepidocolaptes (Aves, Furnariidae), a widespread Neotropical taxon. —Zoologica Scripta, 41, 363–373. Phylogeny of woodcreepers of the genus Lepidocolaptes (Aves, Furnariidae), a widespread Neotropical taxon. The phylogeny of the genus Lepidocolaptes was reconstructed based on three mitochondrial DNA regions and one nuclear DNA intron, using Bayesian analysis. A general pattern of diversification among the lowland species followed by the diversification of highland species, and a close relationship among montane species with the two Atlantic Forest endemics, seem to depict the history of this genus. Results also showed that the two Mesoamerican species are sister‐taxa with high support. Finally, our data also suggest the existence of previously unknown intraspecific genetic structure within some taxa, especially among populations of Lepidocolaptes souleyetii.  相似文献   

10.
ABSTRACT: BACKGROUND: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. RESULTS: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades+Parides) reached South America via the GAARlandia connection, and later became extinct in North America. They only began substantive diversification during the Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. CONCLUSIONS: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.  相似文献   

11.
Late Pliocene and Pleistocene climatic instability has been invoked to explain the buildup of Neotropical biodiversity, although other theories date Neotropical diversification to earlier periods. If these climatic fluctuations drove Neotropical diversification, then a large proportion of species should date to this period and faunas should exhibit accelerated rates of speciation. However, the unique role of recent climatic fluctuations in promoting diversification could be rejected if late Pliocene and Pleistocene rates declined. To test these temporal predictions, dateable molecular phylogenies for 27 avian taxa were used to contrast the timing and rates of diversification in lowland and highland Neotropical faunas. Trends in diversification rates were analyzed in two ways. First, rates within taxa were analyzed for increasing or decreasing speciation rates through time. There was a significant trend within lowland taxa towards decreasing speciation rates, but no significant trend was observed within most highland taxa. Second, fauna wide diversification rates through time were estimated during one-million-year intervals by combining rates across taxa. In the lowlands, rates were highest during the late Miocene and then decreased towards the present. The decline in rates observed both within taxa and for the fauna as a whole probably resulted from density dependent cladogenesis. In the highlands, faunawide rates did not vary greatly before the Pleistocene but did increase significantly during the last one million years of the Pleistocene following the onset of severe glacial cycles in the Andes. These contrasting patterns of species accumulation suggest that lowland and highland regions were affected differently by recent climatic fluctuations. Evidently, habitat alterations associated with global climate change were not enough to promote an increase in the rate of diversification in lowland faunas. In contrast, direct fragmentation of habitats by glaciers and severe altitudinal migration of montane vegetation zones during climatic cycles may have resulted in the late Pleistocene increase in highland diversification rates. This increase resulted in a fauna with one third of its species dating to the last one million years.  相似文献   

12.
Most widespread birds of Neotropical cloud forests exhibit phenotypic variation that is partitioned geographically suggesting allopatric divergence, but little is known about the extent to which such phenotypic differentiation is consistent with genetic variation. We studied geographic patterns of genetic differentiation in the Three-striped Warbler (Basileuterus tristriatus), a polytypic and widespread understory bird of the foothills and mid-elevation zone of the tropical Andes and adjacent mountains of Central and South America. We sequenced mitochondrial DNA for 196 samples covering the entire range of B. tristriatus, as well as 22 samples of its putative closest relatives: the Three-banded (B. trifasciatus) and Santa Marta (B. basilicus) warblers. We found deep genetic structure across the range of B. tristriatus, which consisted of ten major clades including B. trifasciatus, a species that was nested within B. tristriatus. In contrast, B. basilicus was not closely related to B. tristriatus but part of a clade of Myiothlypis warblers. Geographic boundaries among clades were clearly related to lowland gaps separating subspecies groups. The subspecies melanotis of the mountains of Central America was sister to a large clade including B. t. tacarcunae, and the rest of South American clades, including B. trifasciatus. Five clades are found in the northern Andes, where no signs of gene flow were found across barriers such as the Táchira Depression or the Magdalena valley. Our study highlights the importance of valleys in promoting and maintaining divergence in a lower montane forest bird. The substantial genetic and phenotypic differentiation, and the paraphyly uncovered in B. tristriatus, may call for revising its species boundaries.  相似文献   

13.
Aim To assess the genealogical relationships of widespread montane rattlesnakes in the Crotalus triseriatus species group and to clarify the role of Late Neogene mountain building and Pleistocene pine–oak forest fragmentation in driving the diversification of Mexican highland taxa. Location Highlands of mainland Mexico and the south‐western United States (Texas, New Mexico, and Arizona). Methods A synthesis of inferences was used to address several associated questions about the biogeography of the Mexican highlands and the evolutionary drivers of phylogeographical diversity in co‐distributed taxa. We combined extensive range‐wide sampling (130 individuals representing five putative species) and mixed‐model phylogenetic analyses of 2408 base pairs of mitochondrial DNA to estimate genealogical relationships and divergence times within the C. triseriatus species group. We then assessed the tempo of diversification using a maximum likelihood framework based on the birth–death process. Estimated times of divergences provided a probabilistic temporal component and questioned whether diversification rates have remained constant or varied over time. Finally, we looked for phylogeographical patterns in other co‐distributed taxa. Results We identified eight major lineages within the C. triseriatus group, and inferred strong correspondence between maternal and geographic history within most lineages. At least one cryptic species was detected. Relationships among lineages were generally congruent with previous molecular studies, with differences largely attributable to our expanded taxonomic and geographic sampling. Estimated divergences between most major lineages occurred in the Late Miocene and Pliocene. Phylogeographical structure within each lineage appeared to have been generated primarily during the Pleistocene. Although the scale of genetic diversity recognized affected estimated rates of diversification, rates appeared to have been constant through time. Main conclusions The biogeographical history of the C. triseriatus group implies a dynamic history for the highlands of Mexico. The Neogene formation of the Transvolcanic Belt appears responsible for structuring geographic diversity among major lineages. Pleistocene glacial–interglacial climatic cycles and resultant expansions and contractions of the Mexican pine–oak forest appear to have driven widespread divergences within lineages. Climatic change, paired with the complex topography of Mexico, probably produced a myriad of species‐specific responses in co‐distributed Mexican highland taxa. The high degree of genetic differentiation recovered in our study and others suggests that the Mexican highlands may contain considerably more diversity than currently recognized.  相似文献   

14.
Montane areas in the Neotropics are characterized by high diversity and endemism of birds and other groups. The avian genus Myioborus (Parulinae) is a group of insectivorous warblers, characteristic of cloud forests, that represents one of the few Parulinae genera (New World warblers) that has radiated substantially in South America. The genus is distributed throughout most montane regions from the southwestern United States to northern Argentina. Here, I use mitochondrial sequences from the cytochrome b, ND2, and ND3 genes to present the first hypothesis of phylogenetic relationship among all Myioborus species level taxa. Phylogenetic reconstructions based on maximum parsimony, maximum likelihood, and Bayesian methods produced similar results and suggest a northern origin for the genus Myioborus with subsequent colonization of the Neotropical Montane Region. The lower-montane species, M. miniatus, is the sister taxon to a clade in which all taxa occupy upper-montane habitats. These "highland" taxa diverged early in the history of the genus and produced two well-defined monophyletic lineages, a Central-northern Andean clade formed by M. albifrons, M. ornatus, and M. melanocephalus, and a Pantepui (table-mountains of southern Venezuela, northern Brazil, and western Guyana) clade consisting of M. castaneocapillus, M. albifacies, and M. cardonai, and probably M. pariae. M. brunniceps, M. flavivertex, and M. torquatus were included in this upper-montane clade but without clear relationships to other taxa. Lack of resolution of nodes defining the upper-montane species clade is likely to result from a period of rapid diversification mediated by geological and climatic events during the Late Pliocene. These results suggest that an interplay of dispersal and vicariance has shaped the current biogeographic patterns of Myioborus.  相似文献   

15.
Several recent studies have suggested that a substantial portion of today's plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than vicariance, but more data are needed to substantiate this claim. Guatteria (Annonaceae) is, with 265 species, the third largest genus of Neotropical trees after Inga (Fabaceae) and Ocotea (Lauraceae), and its widespread distribution and frequent occurrence makes the genus an excellent model taxon to study diversification patterns. This study reconstructed the phylogeny of Guatteria and inferred three major biogeographical events in the history of the genus: (1) a trans-oceanic Miocene migration from Central into South America before the closing of the Isthmus of Panama; (2) a major diversification of the lineage within South America; and (3) several migrations of South American lineages back into Central America via the closed Panamanian land bridge. Therefore, Guatteria is not an Amazonian centred-genus sensu Gentry but a major Miocene diversification that followed its dispersal into South America. This study provides further evidence that migration into the Neotropics was an important factor in the historical assembly of its biodiversity. Furthermore, it is shown that phylogenetic patterns are comparable to those found in Ocotea and Inga and that a closer comparison of these genera is desirable.  相似文献   

16.
Our understanding of the causes of diversification of Neotropical organisms lags behind that of Northern Hemisphere biota, especially for montane and temperate regions of southern South America. We investigated the mitochondrial DNA genealogical patterns in 262 individuals of the frog Hypsiboas andinus from 26 sites across the eastern ranges of the Andes Mountains in Argentina and Bolivia. Our phylogenetic analyses indicate at least three distinct lineages: one representing H. andinus from Northwestern Argentina and southern Bolivia, at least one H. andinus lineage from northern Bolivia, and one clade containing both H. andinus (from the southern portion of the species range) and its putative sister taxon Hypsiboas riojanus. Hypsiboas andinus samples from northern Bolivia are well differentiated and may represent distinct species. The northern Argentine H. andinus lineage and southern H. andinus/H. riojanus lineage likely diverged between 2 and 6 million years ago; their current sympatry may be the result of secondary contact due to range expansion after isolation during Andean uplift or may reflect cryptic species. Within the geographically extensive northern H. andinus clade, we found significant geographical structuring consistent with historical fragmentation and subsequent range expansion. The timing of this fragmentation and range expansion coincide with the Pleistocene, a time of extensive climatic cycling and vegetational shifts. Average divergence among clades is lower than those found for other Neotropical taxa, highlighting the potential importance of recent climatic history in diversification in the southern Andes.  相似文献   

17.
Abstract.— The high species diversity of aquatic and terrestrial faunas in eastern North America has been attributed to range reductions and allopatric diversification resulting from historical climate change. The role these processes may have played in speciation is still a matter of considerable debate; however, their impacts on intraspecific genetic structure have been well documented. We use mitochondrial DNA sequences to reconstruct an intraspecific phylogeny of the widespread North American spotted salamander, Ambystoma maculatum , and test whether phylogenetic patterns conform to regional biogeographical hypotheses about the origins of diversity in eastern North America. Specifically, we address the number and locations of historical refugia, the extent and patterns of postglacial colonization by divergent lineages, and the origin and affinities of populations in the Interior Highland region. Despite apparent morphological uniformity, genetic discontinuities throughout the range of this species suggest that populations were historically fragmented in at least two refugia in the southern Appalachian Mountains. The ranges of these two highly divergent clades expanded northward, resulting in two widely distributed lineages that are sympatric in regions previously proposed as suture zones for other taxa. The evolutionary history of spotted salamander populations underscores the generality of biogeographical processes in eastern North America: despite differences in population size, glacial refugia, and vagility, similar signatures of differentiation are evident among and within widespread taxa.  相似文献   

18.
The Neotropical genus Glyptolenus Bates is represented in the West Indies by five species, three of which are geographically restricted to single islands; G. latelytra (Darlington) in Jamaica, G. simplicicollis Darlington in Dominica, and G. smithi, new species from St. Vincent. Glyptolenus chalybaeus (Dejean), widespread on the eastern South American mainland, extends northward through the Lesser Antilles to Montserrat. The fifth species, G. negrei Perrault, also widespread on the northern rim of South America, ranges only as far north as the continental island of Trinidad. The first four taxa have most likely achieved their distributions by over‐water dispersal from mainland South and Central America, possibly as many as four separate times. Their absence from the Greater Antilles of Cuba and Hispaniola is contrasted to the occurrence of multiple lineages on those islands in the closely related genus Platynus Bonelli.  相似文献   

19.
The Eastern Afromontane biodiversity hotspot composed of highly fragmented forested highlands (sky islands) harbours exceptional diversity and endemicity, particularly within birds. To explain their elevated diversity within this region, models founded on niche conservatism have been offered, although detailed phylogeographic studies are limited to a few avian lineages. Here, we focus on the recent songbird genus Zosterops, represented by montane and lowland members, to test the roles of niche conservatism versus niche divergence in the diversification and colonization of East Africa's sky islands. The species‐rich white‐eyes are a typically homogeneous family with an exceptional colonizing ability, but in contrast to their diversity on oceanic islands, continental diversity is considered depauperate and has been largely neglected. Molecular phylogenetic analysis of ~140 taxa reveals extensive polyphyly among different montane populations of Z. poliogastrus. These larger endemic birds are shown to be more closely related to taxa with divergent habitat types, altitudinal distributions and dispersal abilities than they are to populations of restricted endemics that occur in neighbouring montane forest fragments. This repeated transition between lowland and highland habitats over time demonstrate that diversification of the focal group is explained by niche divergence. Our results also highlight an underestimation of diversity compared to morphological studies that has implications for their taxonomy and conservation. Molecular dating suggests that the spatially extensive African radiation arose exceptionally rapidly (1–2.5 Ma) during the fluctuating Plio‐Pleistocene climate, which may have provided the primary driver for lineage diversification.  相似文献   

20.
The widespread montane Mexican horned lizard Phrynosoma orbiculare (Squamata: Phrynosomatidae) represents an ideal species to investigate the relative impacts of Neogene vicariance and Quaternary climate change on lineage diversification across the Mexican highlands. We used mitochondrial DNA to examine the maternal history of P. orbiculare and estimate the timing and tempo of lineage diversification. Based on our results, we inferred 11 geographically structured, well supported mitochondrial lineages within this species, suggesting P. orbiculare represents a species complex. Six divergences between lineages likely occurred during the Late Miocene and Pliocene, and four splits probably happened during the Pleistocene. Diversification rate appeared relatively constant through time. Spatial and temporal divergences between lineages of P. orbiculare and co-distributed taxa suggest that a distinct period of uplifting of the Transvolcanic Belt around 7.5-3 million years ago broadly impacted diversification in taxa associated with this mountain range. To the north, several river drainages acting as filter barriers differentially subdivided co-distributed highland taxa through time. Diversification patterns observed in P. orbiculare provide additional insight into the mechanisms that impacted differentiation of highland taxa across the complex Mexican highlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号