首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

2.
Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.  相似文献   

3.
DNA glycosylases are key enzymes participating in the process of DNA repair, which maintains the integrity of the cellular genome. Currently, structures for many of these enzymes have been solved. This review is devoted to the analysis of these structures and the dynamics of the interactions of DNA glycosylases with DNA. The available data suggest that lesion recognition by DNA glycosylases is a highly dynamic process accompanied with multiple conformational changes in the enzyme and the DNA substrate molecules.  相似文献   

4.
The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA.  相似文献   

5.
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.  相似文献   

6.
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.  相似文献   

7.
DNA glycosylases play a major role in the repair of deaminated DNA damage. Previous investigations identified five families within the uracil-DNA glycosylase (UDG) superfamily. All enzymes within the superfamily studied thus far exhibit uracil-DNA glycosylase activity. Here we identify a new class of DNA glycosylases in the UDG superfamily that lacks UDG activity. Instead, these enzymes act as hypoxanthine-DNA glycosylases in vitro and in vivo. Molecular modeling and structure-guided mutational analysis allowed us to identify a unique catalytic center in this class of DNA glycosylases. Based on unprecedented biochemical properties and phylogenetic analysis, we propose this new class of DNA repair glycosylases that exists in bacteria, archaea, and eukaryotes as family 6 and designate it as the hypoxanthine-DNA glycosylase family. This study demonstrates the structural evolvability that underlies substrate specificity and catalytic flexibility in the evolution of enzymatic function.  相似文献   

8.
DNA glycosylases are enzymes that initiate base excision repair, which removes damaged bases from cell DNA. Recent data demonstrate that some genetic variants of two human DNA glycosylases, MUTYH and OGG1, are associated with an increased risk of cancer. In addition, various DNA glycosylases are involved in protection from some neurodegenerative diseases, immune disorders, and virus infections. On the other hand, DNA glycosylases of pathogenic microorganisms help them to evade the host defense mechanisms. Thus, DNA glycosylases are considered to be both potential therapeutic agents and drug targets.  相似文献   

9.
Base excision DNA repair (BER) is necessary for removal of damaged nucleobases from the genome and their replacement with normal nucleobases. BER is initiated by DNA glycosylases, the enzymes that cleave the N-glycosidic bonds of damaged deoxynucleotides. Human endonuclease VIII-like protein 2 (hNEIL2), belonging to the helix–two-turn–helix structural superfamily of DNA glycosylases, is an enzyme uniquely specific for oxidized pyrimidines in non-canonical DNA substrates such as bubbles and loops. The structure of hNEIL2 has not been solved; its closest homologs with known structures are NEIL2 from opossum and from giant mimivirus. Here we analyze the conformational dynamics of free hNEIL2 using a combination of hydrogen/deuterium exchange mass spectrometry, homology modeling and molecular dynamics simulations. We show that a prominent feature of vertebrate NEIL2 – a large insert in its N-terminal domain absent from other DNA glycosylases – is unstructured in solution. It was suggested that helix–two-turn–helix DNA glycosylases undergo open–close transition upon DNA binding, with the large movement of their N- and C-terminal domains, but the open conformation has been elusive to capture. Our data point to the open conformation as favorable for free hNEIL2 in solution. Overall, our results are consistent with the view of hNEIL2 as a conformationally flexible protein, which may be due to its participation in the repair of non-canonical DNA structures and/or to the involvement in functional and regulatory protein–protein interactions.  相似文献   

10.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

11.
DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix-hairpin-helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases.  相似文献   

12.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 104 events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

13.
An essential function of DNA glycosylases is the recognition and excision of damaged bases in DNA, thereby preserving genomic integrity. Lesion recognition is a multistep process, which is only partially revealed by structural analysis of the catalytically competent complex. The functional role of additional residues can be predicted by combining structural data with analysis of amino acid conservation. The following postulate underlies this approach: if a family or superfamily can be broken into subgroups with different substrate specificities, residues highly conserved between these subgroups represent those important for enzyme catalysis and structure maintenance while residues highly conserved within a subgroup but not between subgroups represent residues important for substrate specificity. We review the bioinformatics approach used for this quantitative analysis and describe its application to the Nth superfamily and Fpg family of DNA glycosylases. These results serve as a starting point in planning site-directed mutagenesis experiments to elucidate the functional role of similar and dissimilar residues in DNA repair and other proteins.  相似文献   

14.
15.
DNA glycosylase recognition and catalysis   总被引:5,自引:0,他引:5  
DNA glycosylases are the enzymes responsible for recognizing base lesions in the genome and initiating base excision DNA repair. Recent structural and biochemical results have provided novel insights into DNA damage recognition and repair. The basis of the recognition of the oxidative lesion 8-oxoguanine by two structurally unrelated DNA glycosylases is now understood and has been revealed to involve surprisingly similar strategies. Work on MutM (Fpg) has produced structures representing three discrete reaction steps. The NMR structure of 3-methyladenine glycosylase I revealed its place among the structural families of DNA glycosylases and the X-ray structure of SMUG1 likewise confirmed that this protein is a member of the uracil DNA glycosylase superfamily. A novel disulfide cross-linking strategy was used to obtain the long-anticipated structure of MutY bound to DNA containing an A*oxoG mispair.  相似文献   

16.
During its life cycle, the protist parasite Entamoeba histolytica encounters reactive oxygen and nitrogen species that alter its genome. Base excision repair (BER) is one of the most important pathways for the repair of DNA base lesions. Analysis of the E. histolytica genome revealed the presence of most of the BER components. Surprisingly, this included a gene encoding an apurinic/apyrimidinic (AP) endonuclease that previous studies had assumed was absent. Indeed, our analysis showed that the genome of E. histolytica harbors the necessary genes needed for both short and long-patch BER sub-pathways. These genes include DNA polymerases with predicted 5′-dRP lyase and strand-displacement activities and a sole DNA ligase. A distinct feature of the E. histolytica genome is the lack of several key damage-specific BER glycosylases, such as OGG1/MutM, MDB4, Mag1, MPG, SMUG, and TDG. Our evolutionary analysis indicates that several E. histolytica DNA glycosylases were acquired by lateral gene transfer (LGT). The genes that encode for MutY, AlkD, and UDG (Family VI) are included among these cases. Endonuclease III and UNG (family I) are the only DNA glycosylases with a eukaryotic origin in E. histolytica. A gene encoding a MutT 8-oxodGTPase was also identified that was acquired by LGT. The mixed composition of BER genes as a DNA metabolic pathway shaped by LGT in E. histolytica indicates that LGT plays a major role in the evolution of this eukaryote. Sequence and structural prediction of E. histolytica DNA glycosylases, as well as MutT, suggest that the E. histolytica DNA repair proteins evolved to harbor structural modifications that may confer unique biochemical features needed for the biology of this parasite.  相似文献   

17.
Uracil-DNA glycosylase (Ung) can quickly locate uracil bases in an excess of undamaged DNA. DNA glycosylases may use diffusion along DNA to facilitate lesion search, resulting in processivity, the ability of glycosylases to excise closely spaced lesions without dissociating from DNA. We propose a new assay for correlated cleavage and analyze the processivity of Ung. Ung conducted correlated cleavage on double- and single-stranded substrates; the correlation declined with increasing salt concentration. Proteins in cell extracts also decreased Ung processivity. The correlated cleavage was reduced by nicks in DNA, suggesting the intact phosphodiester backbone is important for Ung processivity.  相似文献   

18.
DNA glycosylases/AP lyases initiate repair of oxidized bases in the genomes of all organisms by excising these lesions and then cleaving the DNA strand at the resulting abasic (AP) sites and generate 3' phospho alpha,beta-unsaturated aldehyde (3' PUA) or 3' phosphate (3' P) terminus. In Escherichia coli, the AP-endonucleases (APEs) hydrolyze both 3' blocking groups (3' PUA and 3' P) to generate the 3'-OH termini needed for repair synthesis. In mammalian cells, the previously characterized DNA glycosylases, NTH1 and OGG1, produce 3' PUA, which is removed by the only AP-endonuclease, APE1. However, APE1 is barely active in removing 3' phosphate generated by the recently discovered mammalian DNA glycosylases NEIL1 and NEIL2. We showed earlier that the 3' phosphate generated by NEIL1 is efficiently removed by polynucleotide kinase (PNK) and not APE1. Here we show that the NEIL2-initiated repair of 5-hydroxyuracil (5-OHU) similarly requires PNK. We have also observed stable interaction between NEIL2 and other BER proteins DNA polymerase beta (Pol beta), DNA ligase IIIalpha (Lig IIIalpha) and XRCC1. In spite of their limited sequence homology, NEIL1 and NEIL2 interact with the same domains of Pol beta and Lig IIIalpha. Surprisingly, while the catalytically dispensable C-terminal region of NEIL1 is the common interacting domain, the essential N-terminal segment of NEIL2 is involved in analogous interaction. The BER proteins including NEIL2, PNK, Pol beta, Lig IIIalpha and XRCC1 (but not APE1) could be isolated as a complex from human cells, competent for repair of 5-OHU in plasmid DNA.  相似文献   

19.
The properties of the major classes of DNA repair enzymes, such as DNA glycosylases, AP-endonucleases, incision nucleases, and alkyl transferases, are reviewed. With the exceptions of the incision nucleases, the properties of the enzymes are quite similar in prokaryotic and eukaryotic cells. The incision nucleases probably do not recognize the modified base residues as such, but rather helical distortion brought about by the modifying agents. The other classes of enzymes are more or less specific for certain modified structures.  相似文献   

20.
The base excision repair (BER) pathway is mainly responsible for the repair of a vast number of non-bulky lesions produced by alkylation, oxidation or deamination of bases. DNA glycosylases are the key enzymes that recognize damaged bases and initiate BER by catalyzing the cleavage of the N-glycosylic bond between the base and the sugar. Many of the mammalian DNA glycosylases have been identified by a combination of biochemical and bioinformatics analysis. Thus, a mammalian family of three proteins (NEIL1, NEIL2 and NEIL3) that showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified. Two of the proteins, NEIL1 and NEIL2 have been thoroughly characterized and shown to initiate BER of a diverse number of oxidized lesions. However, much less is known about NEIL3. The biochemical properties of NEIL3 have not been elucidated. This is mainly due to the difficulty in the expression and purification of NEIL3. Here, we describe the expression and partial purification of full-length human NEIL3 and the expression, purification and characterization of a truncated human core-NEIL3 (amino acids 1–301) that contains the complete E. coli Fpg/Nei-like domain but lacks the C-terminal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号