首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物对开放式CO2 浓度增高(FACE)的响应与适应研究进展   总被引:8,自引:0,他引:8  
开放式CO2浓度增高(FACE)系统是近年研究植物对高CO2浓度响应和适应的新手段,它比以往密闭和半密闭系统对实验植物生长环境的干扰少.利用FACE系统进行研究更有助于正确地预测未来大气CO2浓度增高对植物的影响.该文结合作者的研究工作简要评介了FACE系统与以往密闭和半密闭式CO2浓度增高实验系统的不同之处以及近年来利用FACE系统所作的最新研究进展.  相似文献   

2.
The elevated concentration of atmospheric CO2 may result in a decline of leaf nutritional quality (especially N) and an increase in some kinds of defensive secondary components (such as phenolics). The changes in the phytochemistry of trees, combined with the effect of elevated CO2 per se, have a potential negative influence on insect herbivores. Here, we review the effect of elevated CO2 on the performance of leaf-feeding forest insects at individual-level and commu-nity-level. The elevated CO2 per se have little influence on the metabolism of insects. Over half of the tree-insect experimental systems show that the performance of individual insect become poorer under high-CO2 grown trees; but the others show that the insects have just little or no response to the treatments. The direction and magnitude of the changes in the performance of insects could be mediated by various factors. The effects of treatment are strongly species-dependent. The magni-tude of changes in the phytochemistry, the sensitivity and adaptive capacity of insects to the poorer leaf quality, the differences in plant growth conditions and experimental methods, and the mediated effects of other environmental factors (such as soil nutrient availability, light, temperature, O3) were all closely related to the final performance of insects. However, the larvae's consumption usually increased under enriched CO2 treatment, which was widely thought to be a compensa-tory response to poorer plant quality. The experiments on forest community-level found identically a reduction in herbivory, which was contrary to the results from small-scale experiments. The changes in insect popula-tion and the actual response of consumption by leaf-feeding forest insects under CO2 enrichment remain unclear, and more field-based experiments need to be conducted.  相似文献   

3.
Free-air CO(2) enrichment (FACE) experiments allow study of the effects of elevated [CO(2)] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475-600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results from previous chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth and above-ground production increased, while specific leaf area and stomatal conductance decreased in elevated [CO(2)]. There were differences in FACE. Trees were more responsive than herbaceous species to elevated [CO(2)]. Grain crop yields increased far less than anticipated from prior enclosure studies. The broad direction of change in photosynthesis and production in elevated [CO(2)] may be similar in FACE and enclosure studies, but there are major quantitative differences: trees were more responsive than other functional types; C(4) species showed little response; and the reduction in plant nitrogen was small and largely accounted for by decreased Rubisco. The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are also discussed.  相似文献   

4.
A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 degrees C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20-80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5-15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications.  相似文献   

5.
SM Murphy  GM Wimp  D Lewis  RF Denno 《PloS one》2012,7(8):e43929
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration of anthropogenic nutrient subsidies affects native ecosystems.  相似文献   

6.
1. Aquatic ecologists use mesocosm experiments to understand mechanisms driving ecological processes. Comparisons across experiments, and extrapolations to larger scales, are complicated by the use of mesocosms with varying dimensions. We conducted a mesocosm experiment over a volumetric scale spanning five orders of magnitude (from 4 L to whole ponds) to determine the generality of algal responses to nutrient enrichment. Recognising that mesocosm dimensions may affect algal growth, we also manipulated the ratio of mesocosm surface area to volume (SA : V) over two levels (high versus low). We used mesocosm tanks of similar size and construction to those commonly used in aquatic experiments to increase the generality of our results. 2. Volume was generally a stronger determinant of algal responses than mesocosm shape (i.e. SA : V). However, the effects of both volume and shape on algae were weak and explained a small portion of the variance in response variables. In addition, there was no consistent, directional relationship (positive or neutral) between mesocosm volume and algal abundance (estimated by chlorophyll concentration). Combined, our findings suggest that results from small‐scale experiments, examining the direct response of algae to nutrient enrichment, can probably be ‘moved on up’ and applied to larger, more natural aquatic systems. 3. Algal response to nutrient enrichment (e.g. nutrient use efficiency and effect size) varied strongly with time. This underscores the importance of choosing an experimental timescale appropriate to the biological and/or ecological process of interest. 4. We compared our results to those from a recent meta‐analysis of nutrient‐limitation studies that included 359 freshwater pelagic experiments, spanning a wide range of volumetric and temporal scales. Similar findings between this experiment and the meta‐analysis indicate that algal response to nutrient enrichment varies little across spatial scales. Therefore, it is probable that results from small‐scale pelagic algal nutrient‐limitation experiments are relevant to large‐scale processes, such as eutrophication.  相似文献   

7.
A three-week mesocosm experiment was conducted in order to study the effects of bottom sediment and nutrient enrichment on phytoplankton and zooplankton community structure in the Archipelago Sea, northern Baltic Sea. The transparent polyethylene enclosures included the whole water column and varied in volume from 30 to 40 m3. There were two types of enclosures: some with natural sediment as a bottom and others with a plastic bottom. The experiment was a 2 × 2 factorial design with presence of sediment and nutrient enrichment as treatment factors. Both the sediment presence and nutrient enrichment significantly increased water nutrient concentrations and the rate of primary production. However, external nutrient enrichment and the presence of sediment stimulated the growth of different phytoplankton groups, indicating that the effect of sediment was not related to nutrient fluxes alone, but involved more complex interactions. External nutrient enrichment was primarily channelled to picoplanktonic cyanobacteria, the biomass of which increased four- to fivefold due to enrichment. The presence of sediment increased the biomass of cryptophytes, chrysophytes and prasinophytes, but decreased the biomass of N2-fixing cyanobacteria. Zooplankton biomass increased during the experiment, but was not affected by the treatments. The study shows that sediment plays a significant role in phytoplankton dynamics, underlining the importance of including sediment in shallow-water mesocosm experiments. Handling editor: J. Padisak  相似文献   

8.
Early experiments investigating the effects of CO(2) enrichment on plants frequently showed photosynthetic stimulation and reduced stomatal aperture over short time periods. Work on the effects of elevated CO(2) has advanced in two major areas: by the extension of long-term and field experiments, and through investigations on the wide range of negative feedbacks affecting plant responses to CO(2). Downward photosynthetic acclimation in response to CO(2) enrichment is frequently observed over the short and long term, and indicates the activity of diverse feedback mechanisms. CO(2) is generally viewed as a limiting photosynthetic resource. However, recent work on stomatal development has shown that this view is simplistic: long- and short-distance signalling of CO(2) concentration are necessary components of normal plant development.  相似文献   

9.
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context‐dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context‐dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non‐trophic interactions based on empirical evidence must be incorporated into food web‐based ecological models to improve understanding of community responses to global change.  相似文献   

10.
Optimal nitrogen allocation controls tree responses to elevated CO2   总被引:1,自引:0,他引:1  
Despite the abundance of experimental data, understanding of forest responses to elevated CO2 is limited. Here I show that a key to previously unexplained production and leaf area responses lies in the interplay between whole-plant nitrogen (N) allocation and leaf photosynthesis. A simple tree growth model, controlled by net growth maximization through optimization of leaf area index (LAI) and plant N, is used to analyse CO2 responses in both young, expanding and closed, steady-state canopies. The responses are sensitive to only two independent parameters, the photosynthetic capacity per leaf N (a) and the fine-root N:leaf N ratio. The model explains observed CO2 responses of photosynthesis, production and LAI in four forest free air CO2 enrichment (FACE) experiments. Insensitivity of LAI except at low LAI, increase in light-use efficiency, and photosynthetic down-regulation (as a result of reduced leaf N per area) at elevated CO2 are all explained through the combined effects on a and leaf quantum efficiency. The model bridges the gap between the understanding of leaf-level and plant-level responses and provides a transparent framework for interpreting and linking structural (LAI) and functional (net primary production (NPP):gross primary production (GPP) ratio, light-use efficiency, photosynthetic down-regulation) responses to elevated CO2.  相似文献   

11.
大气CO2浓度升高对农田土壤微生物及其相关因素的影响   总被引:16,自引:3,他引:16  
李杨  黄国宏  史奕 《应用生态学报》2003,14(12):2321-2325
综述了大气CO2浓度升高条件下,农田土壤微生物区系、土壤呼吸、土壤微生物生物量;植物-微生物共生体--内生菌根、根瘤及其与农田土壤微生物活动相关因素发生的变化。该方面的研究虽然受实验条件限制,在国内外开展研究的持续时间较短,但现有的研究表明,大气CO2浓度升高主要通过影响植物生长而间接影响农田土壤微生物活性。  相似文献   

12.
Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL.  相似文献   

13.
Flöder S  Hansen T  Ptacnik R 《Protist》2006,157(3):291-302
Phagotrophy and competitive ability of the mixotrophic Ochromonas minima were investigated in a three-factorial experiment where light intensity (low: 1.0 micromol m(-2)s(-1) and high: 60 micromol m(-2)s(-1) PPFD), nutrient concentration (ambient: 7.0 micromolNl(-1), 0.11 micromol P l(-1) and enriched: 88 micromol N l(-1), 6.3 micro mol P l(-1)) and DOC supply (without and with enrichment, 250 micromol C l(-1)) were manipulated. Ochromonas minima and bacterial abundance were monitored for 12 days. We found significant and interacting effects of light and nutrients on Ochromonas minima growth rate and abundance. At high light intensity, nutrient enrichment resulted in increased growth rates and population sizes. In contrast, reduced growth rates and population sizes were observed for nutrient enrichment when light intensity was low. Although, Ochromonas minima was able to ingest bacteria under both high and low light conditions, it grew only when light intensity was high. At high light intensity, Ochromonas minima grew exponentially under nutrient conditions that would have been limiting for photoautotrophic microalgae. In non-enriched low light treatments, Ochromonas minima populations survived, probably by using background DOC as an energy source, indicating that this ability can be of relevance for natural systems even when DOC concentrations are relatively low. When competing with photoautotrophic microalgae, the ability to grow under severe nutrient limitation and to survive under light limitation should be advantageous for Ochromonas minima.  相似文献   

14.
全球大气CO2浓度升高对土壤微生物的影响   总被引:1,自引:1,他引:0  
全球大气CO2浓度升高对土壤微生物生态系统的影响已引起广泛关注。本文从土壤微生物群落结构、微生物区系、土壤呼吸、微生物生物量以及土壤酶活性方面对大气高浓度CO2的响应进行了综述。由于提供高浓度CO2的实验系统、所选植物材料以及土壤特性等的不同,大气CO2浓度升高对土壤微生物群落结构、微生物区系、土壤呼吸、微生物生物量以及土壤酶活性的影响并未得出一致结论。但高浓度CO2对土壤微生物生态系统的影响是存在的。  相似文献   

15.
The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human‐induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem‐level process in forest streams. Here, we present a meta‐analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream‐reach scale. By contrast, nutrient enrichment at the litter‐bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co‐limitation of decomposition in streams. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher for wood than for leaves, and for low‐quality than for high‐quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta‐analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low‐quality plant litter inputs.  相似文献   

16.
Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to anticipate the impact of global change on dune ecosystem functioning.  相似文献   

17.
Diehl S 《The American naturalist》2007,169(6):E173-E191
Energy-based plant-herbivore models produce the "paradox of enrichment," a destabilizing influence of enrichment on population dynamics. Because many plants change their carbon : nutrient stoichiometry in response to the light : nutrient supply ratio, enrichment with light can cause a mismatch between the elemental compositions of plants and their herbivores. Herbivore growth rates may then decrease with increased light supply, which is termed the "paradox of energy enrichment." I present a stoichiometric phytoplankton-grazer model that accounts for the dynamical vertical light gradient and explore how algal and grazer densities, mineral nutrient concentration, algal nutrient stoichiometry, and system stability respond to enrichment with light (through changes in irradiance, background turbidity, and water column depth) versus enrichment with nutrients. Parameterized for Daphnia, the model produces several "unusual" phenomena: multiple equilibria (with grazers extinct in spite of high algal biomass at one equilibrium), inconsistent light enrichment effects on stability (light enrichment first destabilizes and then stabilizes), and the paradox of energy enrichment. These phenomena are restricted to the low end of realistic nutrient supplies except in very shallow systems, where high sedimentation rates effectively deplete the water column of nutrients. At higher nutrient supplies, light enrichment produces the classical paradox of enrichment, leading first to an increase in grazers at a stable equilibrium and then to algae-grazer oscillations.  相似文献   

18.
Classic consumer-resource models with hyperbolic functional responses predict that enrichment increases the average biomasses of the species, but eventually leads to species' extinction due to accelerated oscillations ("paradox of enrichment"). However, empirical studies have stressed the complexity of natural food webs and the dominance of sigmoid or predator-interference functional responses, which may dampen population oscillations due to enrichment. Using analytical and numerical methods, we study enrichment effects on simple consumer-resource pairs and complex food webs with hyperbolic Holling type II (hereafter: type II), sigmoid Holling type III (hereafter: type III) and Beddington-De Angelis predator-interference functional responses (hereafter: BDA). Consumer-resource systems with a type III or BDA functional response are highly robust against accelerated oscillations due to enrichment, and the "paradox of enrichment" is resolved under certain parameter combinations. Subsequently, we simulated complex food webs with empirically-corroborated body-size structures of consumers that are ten times larger than their average resource. Our analyses demonstrate positive connectance-stability relationships with BDA or type III functional responses. Moreover, increasing connectance of these food webs also increases the robustness against enrichment in models with a BDA functional response. These results suggest that the well-known destabilising effects of connectance and enrichment found in classic models with type II functional responses may be inverted into stabilising effects in more realistic food-web models that are based on empirically-corroborated body-size structures and BDA or type III functional responses.  相似文献   

19.
As C(3) photosynthesis is not yet CO(2)-saturated, forests offer the possibility of enhanced growth and carbon (C) sequestration with rising atmospheric CO(2). However, at an ecosystem scale, increased photosynthetic rates are not always translated into faster tree growth, and in free air carbon enrichment (FACE) experiments with trees, the stimulation in above-ground growth often declines with time. So is tree growth C-limited? The evidence is reviewed here at three different scales. First, at the biochemical scale, the role of Rubisco is discussed by considering its evolution and role as a nitrogen (N) storage protein. Second, at the ecophysiological scale, C allocation to gain nutrients from the soil is considered and it is argued that any C limitation is only through a limitation to soil nutrient cycling. Finally, the response of forest ecosystems to rising atmospheric CO(2) concentrations is considered and evidence from FACE experiments is discussed. From the three lines of evidence we conclude that the growth of trees is not C-limited, with the key to understanding future responses to climate change being turnover of soil organic matter and nutrient cycling.  相似文献   

20.
Senescence is a highly regulated process which is under genetic control. In monocarpic plants, the onset of fruit development is the most important factor initiating the senescence process. During senescence, a large fraction of plant nutrients is reallocated away from vegetative tissues into generative tissues. Senescence may therefore be regarded as a highly effective salvage mechanism to save nutrients for the offspring. CO(2) enrichment, besides increasing growth and yield of C(3) plants, has often been shown to accelerate leaf senescence. C(3) plants grown under elevated CO(2) experience alterations in their nutrient relations. In particular their tissue nitrogen concentrations are always lower after exposure to elevated CO(2). We used a monocarpic C(3) crop - spring barley (Hordeum vulgare cv. Alexis) - grown in open-top field chambers to test the effects of CO(2) enrichment on growth and yield, on nitrogen acquisition and redistribution, and on the senescence process in flag leaves, at two applications of nitrogen fertilizer. CO(2) enrichment (650 vs. 366 μmol mol(-1)) caused an increase both in biomass and in grain yield by 38% (average of the two fertilizer applications) which was due to increased tillering. Total nitrogen uptake of the crops was not affected by CO(2) treatment but responded solely to the N supply. Nitrogen concentrations in grains and straw were significantly lower (-33 and -24%) in plants grown at elevated CO(2). Phenological development was not altered by CO(2) until anthesis. However, progress of flag leaf senescence as assessed by chlorophyll content, protein content and content of large and small subunit of RubisCO and of cytochrome b559 was enhanced under elevated CO(2) concentrations by approximately 4 days. We postulate that CO(2) enhanced flag leaf senescence in barley crops by increasing the nitrogen sink capacity of the grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号