首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high risk associated with biological threat agents dictates that any suspicious sample be handled under strict surety and safety controls and processed under high-level containment in specialized laboratories. This study attempted to find a rapid, reliable, and simple method for the complete inactivation of a wide range of pathogens, including spores, vegetative bacteria, and viruses, while preserving microbial nucleic acid fragments suitable for PCRs and proteinaceous epitopes for detection by immunoassays. Formaldehyde, hydrogen peroxide, and guanidium thiocyanate did not completely inactivate high titers of bacterial spores or viruses after 30 min at 21°C. Glutaraldehyde and sodium hypochlorite showed high microbicidal activity but obliterated the PCR or enzyme-linked immunosorbent assay (ELISA) detection of bacterial spores or viruses. High-level inactivation (more than 6 log(10)) of bacterial spores (Bacillus atrophaeus), vegetative bacteria (Pseudomonas aeruginosa), an RNA virus (the alphavirus Pixuna virus), or a DNA virus (the orthopoxvirus vaccinia virus) was attained within 30 min at 21°C by treatment with either peracetic acid or cupric ascorbate with minimal hindrance of subsequent PCR tests and immunoassays. The data described here should provide the basis for quickly rendering field samples noninfectious for further analysis under lower-level containment and considerably lower cost.  相似文献   

2.
The inactivation of Tyzzer's organism (Bacillus piliformis) spore isolated from rats by heat and various chemical disinfectants was studied. The spores were from B. piliformis-infected rat liver tissues. The spore suspension (10(4) 50% of rat liver lesion producing dose with prednisolone treatment/ml) was treated with heart or disinfectants. Inactivation of the spores was examined in experimentally infected rats. Rats were inoculated perorally with a treated spore suspension and injected subcutaneously with prednisolone. On the sixth day after inoculation, rats were examined grossly for liver lesions. Spores were inactivated at 80 degrees C for 15 min but not at 60 degrees C for 30 min. Spores were inactivated by 0.4% peracetic acid, 0.015% sodium hypochrolite, 1% iodophol, 5% phenol. Alcide and 0.37% formaldehyde solution, but not by 0.037% formaldehyde solution, 70% ethanol, 0.3% benzethonium chloride solution, 3% cresol and soap solution, or 4% chlorhexidine digluconate. These findings suggest that B. piliformis spores are relatively sensitive to heat and certain chemical disinfectants.  相似文献   

3.
Aims: To evaluate a sodium hypochlorite and hydrogen peroxide solution (Ox‐B7) as a potential decontaminant of Bacillus subtilis spore‐contaminated surface materials (porous and nonporous). Methods and Results: Test materials were contaminated with B. subtilis spores to a final concentration in the range of 5·7–6·6 log CFU cm?2. Ox‐B7 reduced spore counts by 99·999% (5 log) for both porous and nonporous surfaces within a 5‐min contact. Treatment with equivalent concentrations of only sodium hypochlorite reduced spore counts by 99% (2 log) on porous materials and by 99·99% (4 log) on nonporous materials. Hydrogen peroxide treatments reduced spores by less than 90% (<1 log) on both porous and nonporous materials when compared with untreated samples. Conclusions: A combination of sodium hypochlorite and hydrogen peroxide (Ox‐B7) effectively killed B. subtilis spores on both porous and nonporous surface materials. Significance and Impact of the Study: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant of spore‐contaminated surface materials, as it is more effective than when hydrogen peroxide or sodium hypochlorite are used separately.  相似文献   

4.
Aims: To determine if pretreatment with oxidizing agents sensitizes Bacillus subtilis spores to dry heat or desiccation. Methods: Bacillus subtilis spores were killed approx. 90% by oxidizing agents, and the sensitivity of treated and untreated spores to dry heat and desiccation was determined. The effects of pyruvate on spore recovery after oxidizing agent pretreatment and then dry heat or desiccation were also determined. Conclusions: Spores pretreated with Oxone? or hypochlorite were not sensitized to dry heat or freeze‐drying. However, hydrogen peroxide or t‐butylhydroperoxide pretreatment sensitized spores to dry heat or desiccation, and the desiccation caused mutagenesis in the survivors. Pyruvate increased recovery of spores treated with hydrogen peroxide alone or plus dry heat or desiccation, and with t‐butylhydroperoxide and desiccation, but not with t‐butylhydroperoxide alone or plus dry heat. Significance and Impact of the Study: Pretreatment with peroxides sensitizes bacterial spores to subsequent stress. This finding may suggest improved regimens for spore inactivation.  相似文献   

5.
AIMS: To determine if treatment of Bacillus subtilis spores with a variety of oxidizing agents causes damage to the spore's inner membrane. METHODS AND RESULTS: Spores of B. subtilis were killed 80-99% with wet heat or a variety of oxidizing agents, including betadine, chlorine dioxide, cumene hydroperoxide, hydrogen peroxide, Oxone, ozone, sodium hypochlorite and t-butylhydroperoxide, and the agents neutralized and/or removed. Survivors of spores pretreated with oxidizing agents exhibited increased sensitivity to killing by a normally minimal lethal heat treatment, while spores pretreated with wet heat did not. In addition, spores treated with wet heat or the oxidizing agents, except sodium hypochlorite, were more sensitive to high NaCl in plating media than were untreated spores. The core region of spores treated with at least two oxidizing agents was also penetrated much more readily by methylamine than was the core of untreated spores, and spores treated with oxidizing agents but not wet heat germinated faster with dodecylamine than did untreated spores. Spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents. CONCLUSIONS: Treatment of spores with oxidizing agents has been suggested to cause damage to the spore's inner membrane, a membrane whose integrity is essential for spore viability. The sensitization of spores to killing by heat and to high salt after pretreatment with oxidizing agents is consistent with and supports this suggestion. Presumably mild pretreatment with oxidizing agents causes some damage to the spore's inner membrane. While this damage may not be lethal under normal conditions, the damaged inner membrane may be less able to maintain its integrity, when dormant spores are exposed to high temperature or when germinated spores are faced with osmotic stress. Triggering of spore germination by dodecylamine likely involves action by this agent on the spore's inner membrane allowing release of the spore core's depot of dipicolinic acid. Presumably dodecylamine more readily alters the permeability of a damaged inner membrane and thus more readily triggers germination of spores pretreated with oxidizing agents. Damage to the inner spore membrane by oxidizing agents is also consistent with the more rapid penetration of methylamine into the core of treated spores, as the inner membrane is likely the crucial permeability barrier to methylamine entry into the spore core. As spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents, it is not through oxidation of unsaturated fatty acids that oxidizing agents kill and/or damage spores. Perhaps these agents work by causing oxidative damage to key proteins in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The more rapid heat killing and germination with dodecylamine, the greater permeability of the spore core and the osmotic stress sensitivity in outgrowth of spores pretreated with oxidizing agents is consistent with such agents causing damage to the spore's inner membrane, even if this damage is not lethal under normal conditions. It may be possible to take advantage of this phenomenon to devise improved, less costly regimens for spore inactivation.  相似文献   

6.
From synchronized sporulation and spore mutant studies, the order of development of resistance to biocides during sporulation of Bacillus subtilis strain 168 was toluene, formaldehyde, sodium lauryl sulphate, phenol, phenylmercuric nitrate, m -cresol, chlorocresol, chlorhexidine gluconate, cetylpyridinium chloride, moist heat, sodium dichlorisocyanurate, sodium hypochlorite, lysozyme and glutaraldehyde. These resistances could be assigned to different stages in spore development.  相似文献   

7.
Treatment of wild-type spores of Bacillus subtilis with glutaraldehyde or an iodine-based disinfectant (Betadine) did not cause detectable mutagenesis, and spores (termed alpha-beta-) lacking the major DNA-protective alpha/beta-type, small, acid-soluble proteins (SASP) exhibited similar sensitivity to these agents. A recA mutation did not sensitize wild-type or alpha-beta- spores to Betadine or glutaraldehyde, nor did spore treatment with these agents result in significant expression of a recA-lacZ fusion when the treated spores germinated. Spore glutaraldehyde sensitivity was increased dramatically by removal of much spore coat protein, but this treatment had no effect on Betadine sensitivity. In contrast, nitrous acid treatment of wild-type and alpha-beta- spores caused significant mutagenesis, with alpha-beta- spores being much more sensitive to this agent. A recA mutation further sensitized both wild-type and alpha-beta- spores to nitrous acid, and there was significant expression of a recA-lacZ fusion when nitrous acid-treated spores germinated. These results indicate that: (a) nitrous acid kills B. subtilis spores at least in part by DNA damage, and alpha/beta-type SASP protect against this DNA damage; (b) killing of spores by glutaraldehyde or Betadine is not due to DNA damage; and (c) the spore coat protects spores against killing by glutaraldehyde but not Betadine. Further analysis also demonstrated that spores treated with nitrous acid still germinated normally, while those treated with glutaraldehyde or Betadine did not.  相似文献   

8.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

9.
AIMS: To determine the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. METHODS AND RESULTS: Killing of spores of B. subtilis with hydrogen peroxide caused no release of dipicolinic acid (DPA) and hydrogen peroxide-killed spores were not appreciably sensitized for DPA release upon a subsequent heat treatment. Hydrogen peroxide-killed spores appeared to initiate germination normally, released DPA and hydrolysed significant amounts of their cortex. However, the germinated killed spores did not swell, did not accumulate ATP or reduced flavin mononucleotide and the cores of these germinated spores were not accessible to nucleic acid stains. CONCLUSIONS: These data indicate that treatment with hydrogen peroxide results in spores in which the core cannot swell properly during spore germination. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide further information on the mechanism of killing of spores of Bacillus species by hydrogen peroxide.  相似文献   

10.
D L Popham  S Sengupta    P Setlow 《Applied microbiology》1995,61(10):3633-3638
Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha-beta- spores) have the same core water content as do wild-type spores, but alpha-beta- dacB spores had more core water than did dacB spores. The resistance of alpha-beta-, alpha-beta- dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (i) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of alpha/beta-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (ii) suggest that binding of alpha/beta-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (iii) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (iv) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by alpha/beta-type SASP.  相似文献   

11.
M.Z.H. SABLI, P. SETLOW AND W.M. WAITES. 1996. α/β-Type small acid-soluble proteins (SASP) bind to spore DNA and protect it against ultraviolet light, heat, hydrogen peroxide and freeze drying, making the spores much more resistant than vegetative cells to these agents. Spores of a mutant of Bacillus subtilis lacking the two major α/β-type SASP were almost 30 000-fold less resistant to hypochlorite than were wild-type spores. After treatment with hypochlorite, surviving spores of the mutant, but not those of the wild type, showed higher levels of mutation, suggesting that SASP contribute to hypochlorite resistance by protecting spore DNA.  相似文献   

12.
Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.  相似文献   

13.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by hypochlorite and chlorine dioxide, and its resistance against them. METHODS AND RESULTS: Spores of B. subtilis treated with hypochlorite or chlorine dioxide did not accumulate damage to their DNA, as spores with or without the two major DNA protective alpha/beta-type small, acid soluble spore proteins exhibited similar sensitivity to these chemicals; these agents also did not cause spore mutagenesis and their efficacy in spore killing was not increased by the absence of a major DNA repair pathway. Spore killing by these two chemicals was greatly increased if spores were first chemically decoated or if spores carried a mutation in a gene encoding a protein essential for assembly of many spore coat proteins. Spores prepared at a higher temperature were also much more resistant to these agents. Neither hypochlorite nor chlorine dioxide treatment caused release of the spore core's large depot of dipicolinic acid (DPA), but hypochlorite- and chlorine dioxide-treated spores much more readily released DPA upon a subsequent normally sub-lethal heat treatment than did untreated spores. Hypochlorite-killed spores could not initiate the germination process with either nutrients or a 1 : 1 chelate of Ca2+-DPA, and these spores could not be recovered by lysozyme treatment. Chlorine dioxide-treated spores also did not germinate with Ca2+-DPA and could not be recovered by lysozyme treatment, but did germinate with nutrients. However, while germinated chlorine dioxide-killed spores released DPA and degraded their peptidoglycan cortex, they did not initiate metabolism and many of these germinated spores were dead as determined by a viability stain that discriminates live cells from dead ones on the basis of their permeability properties. CONCLUSIONS: Hypochlorite and chlorine dioxide do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents appears to be the spore coat. Spore killing by hypochlorite appears to render spores defective in germination, possibly because of severe damage to the spore's inner membrane. While chlorine dioxide-killed spores can undergo the initial steps in spore germination, these germinated spores can go no further in this process probably because of some type of membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of the killing of bacterial spores by hypochlorite and chlorine dioxide.  相似文献   

14.
Biocide inactivation of Bacillus anthracis spores in the presence of food residues after a 10-min treatment time was investigated. Spores of nonvirulent Bacillus anthracis strains 7702, ANR-1, and 9131 were mixed with water, flour paste, whole milk, or egg yolk emulsion and dried onto stainless-steel carriers. The carriers were exposed to various concentrations of peroxyacetic acid, sodium hypochlorite (NaOCl), or hydrogen peroxide (H(2)O(2)) for 10 min at 10, 20, or 30 degrees C, after which time the survivors were quantified. The relationship between peroxyacetic acid concentration, H(2)O(2) concentration, and spore inactivation followed a sigmoid curve that was accurately described using a four-parameter logistic model. At 20 degrees C, the minimum concentrations of peroxyacetic acid, H(2)O(2), and NaOCl (as total available chlorine) predicted to inactivate 6 log(10) CFU of B. anthracis spores with no food residue present were 1.05, 23.0, and 0.78%, respectively. At 10 degrees C, sodium hypochlorite at 5% total available chlorine did not inactivate more than 4 log(10) CFU. The presence of the food residues had only a minimal effect on peroxyacetic acid and H(2)O(2) sporicidal efficacy, but the efficacy of sodium hypochlorite was markedly inhibited by whole-milk and egg yolk residues. Sodium hypochlorite at 5% total available chlorine provided no greater than a 2-log(10) CFU reduction when spores were in the presence of egg yolk residue. This research provides new information regarding the usefulness of peroxygen biocides for B. anthracis spore inactivation when food residue is present. This work also provides guidance for adjusting decontamination procedures for food-soiled and cold surfaces.  相似文献   

15.
An approach to decontamination of biological endospores is discussed. Specifically, the performance of an aqueous modified Fenton reagent is examined. A modified Fenton reagent formulation of cupric chloride, ascorbic acid, and sodium chloride is shown to be an effective sporicide under aerobic conditions. The traditional Fenton reaction involves the conversion of hydrogen peroxide to hydroxyl radical by aqueous ionic catalysts such as the transition metal ions. Our modified Fenton reaction involves the conversion of aqueous dissolved oxygen to hydrogen peroxide by an ionic catalyst (Cu(2+)) and then subsequent conversion to hydroxyl radicals. Results are given for the modified Fenton reagent deactivating spores of Bacillus globigii. A biocidal mechanism is proposed that is consistent with our experimental results and independently derived information found in the literature. This mechanism requires diffusion of relatively benign species into the interior of the spore, where dissolved O(2) is then converted through a series of reactions which ultimately produce hydroxyl radicals that perform the killing action.  相似文献   

16.
An attempt has been made to rule out possible causes of artefacts in establishing survival curves of Bacillus licheniformis spores heated (30–80 °C) in 4.4 mol/l hydrogen peroxide (pH 2.0). A tailing phenomenon apparent as that of a suspension of spores produced by routine subculture was obtained with those grown-up from a single spore selected by micromanipulation. No spore fraction differing in size or density could be separated from the whole population. The tail was not due to decomposition of hydrogen peroxide, protective effect by other spores, release of protective factors, or temperature heterogeneity during treatment. Changing from an open vessel to a closed tube did not influence the tailing. The only apparent artefact was therefore the formation of clumps under the conditions of the treatment. Since the spore catalase was demonstrated to be highly resistant, it was concluded that a spore could be protected against hydrogen peroxide by the catalase of the other spores in the clump. Conditions resembling those arising in spore suspensions could occur under industrial conditions, for example in sterilizing surfaces contaminated with aggregates of Bacillus spores.  相似文献   

17.
Inactivation of spores of Bacillus subtilis (ATCC 6633) on two different grades of cellulose filter paper (Whatman Grades 2 and 6), by ultraviolet light (u.v.), at an intensity of approximately 4·5 Wm−2 and at fluences of up to 2 × 103 Jm−2, and u.v. in the presence of hydrogen peroxide, is described in terms of multi-target and single hit–single target kinetic expressions. Wet spores were inactivated at rates ranging from 6·7 to 10·6 higher than that of dry spores on both grades of filter paper. In addition, spore inactivation was up to 5·6 times more rapid on Grade 2 filter paper. Synergistic inactivation was seen to occur when spores were irradiated in the presence of 1% (w/v) hydrogen peroxide with rates up to 5·3 times higher than with treatment solely by u.v. The results obtained are discussed in general terms with particular reference to surface characteristics which might provide shielding to micro-organisms from incident u.v. light.  相似文献   

18.
Although peracetic acid (PAA) is used widely for cold sterilization and disinfection, its mechanisms of sporicidal action are poorly understood. PAA at high concentrations (5–10%) can cause major loss of optical absorbance and microscopically-visible damage to bacterial spores. Spores killed by lower levels of PAA (0.02–0.05%) showed no visible damage and remained refractile. Treatment of spores ofBacillus megaterium ATCC 19213 with PAA at concentrations close to the lethal level sensitized the cells to subsequent heat killing. In addition, PAA was found to act in concert with hypochlorite and iodine to kill spores. Antioxidant sulfhydryl compounds or ascorbate protected spores against PAA killing. Trolox, a water-soluble form of -tocopherol, was somewhat protective, while other antioxidants, including -tocopherol, urate, bilirubin, ampicillin and ethanol were not protective. Chelators, including dipicolinate, were not protective, but transition metal ions, especially the reduced forms (Co2+, Cu+ and Fe2+) were highly protective. The net conclusions are that organic radicals formed from PAA are sporicidal and that they may act as reducing agents for spores that are normally in a highly oxidized state, in addition to their well known actions as oxidizing agents in causing damage to vegetative cells.  相似文献   

19.
Ascorbate peroxidase isoforms localized in the stroma and thylakoid of higher plant chloroplasts are rapidly inactivated by hydrogen peroxide if the second substrate, ascorbate, is depleted. However, cytosolic and microbody-localized isoforms from higher plants as well as ascorbate peroxidase B, an ascorbate peroxidase of a red alga Galdieria partita, are relatively tolerant. We constructed various chimeric ascorbate peroxidases in which regions of ascorbate peroxidase B, from sites internal to the C-terminal end, were exchanged with corresponding regions of the stromal ascorbate peroxidase of spinach. Analysis of these showed that a region between residues 245 and 287 was involved in the inactivation by hydrogen peroxide. A 16-residue amino acid sequence (249-264) found in this region of the stromal ascorbate peroxidase was not found in other ascorbate peroxidase isoforms. A chimeric ascorbate peroxidase B with this sequence inserted was inactivated by hydrogen peroxide within a few minutes. The sequence forms a loop that binds noncovalently to heme in cytosolic ascorbate peroxidase of pea but does not bind to it in stromal ascorbate peroxidase of tobacco, and binds to cations in both ascorbate peroxidases. The higher susceptibility of the stromal ascorbate peroxidase may be due to a distorted interaction of the loop with the cation and/or the heme.  相似文献   

20.
The antimicrobial properties of aqueous solutions of peracetic acid and hydrogen peroxide have been compared. Peracetic acid exhibited excellent antimicrobial properties, especially under acidic conditions. Reductions by a factor of 106 in the numbers of vegetative bacteria are obtained within 1 min at 25°C using a solution containing 1.3 mmol/l of peracetic acid. Rapid activity against bacterial spores and yeasts also occurs. Hydrogen peroxide is more effective as a sporicide than as a bactericide, with sporicidal action being obtained using a solution containing 0.88 mol/l. Bactericidal action is poor but hydrogen peroxide was bacteriostatic at concentrations above 0.15 mmol/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号