首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effect of oxotremorine (1 mg kg-1 i.p.) on the steady state concentration of acetylcholine (ACh) and choline (Ch) and the transformation of radioactive choline ([3H]Ch) was studied in different brain regions of the mouse following death by microwave irradiation of the head. Oxotremorine significantly increased the concentration of endogenous ACh in the cortex and hippocampus and of endogenous Ch in the cortex. Pretreatment with atropine (5 mg kg-1 i.p.) prevented the increase in ACh. The biosynthesis of radioactive ACh ([3H]ACh) was decreased in all brain regions. Atropine (5 mg kg-1) pretreatment counteracted this effect of oxotremorine (1 mg kg-1), while methylatropine (5 mg kg-1) had no effect except in the striatum. A calculation of the apparent turnover rate of ACh showed that oxotremorine (1 mg kg-1) decreased the turnover in the cortex, hippocampus, midbrain. and striatum.  相似文献   

2.
Biochemical changes in the rat brain cholinergic system during and after 60 min of ischemia were studied using a four-vessel occlusion model. Extracellular acetylcholine (ACh) concentrations in the unanesthetized rat hippocampus markedly increased during ischemia and reached a peak (about 13.5 times baseline levels) at 5-10 min after the onset of ischemia. At 2-5 h after reperfusion, extracellular ACh concentrations were reduced to 64-72% of the levels of controls. ACh levels in the hippocampus, striatum, and cortex decreased significantly during ischemia and exceeded their control values just after reperfusion. A significant increase in hippocampal ACh level after 2 days of reperfusion and a decrease in [14C]ACh synthesis from [14C]glucose in hippocampal slices excised at 2 days after reperfusion were observed. The extracellular concentrations and tissue levels of choline markedly increased after ischemia. These results show that ACh is markedly released into the extracellular space in the hippocampus during ischemia, and they suggest that ACh synthesis is activated just after reperfusion and that cholinergic activity is reduced after 2-48 h of reperfusion in the hippocampus.  相似文献   

3.
The levels of the neurotransmitter amino acids glutamate, aspartate, and GABA were determined in different brain regions during ischemia and post-ischemic recirculation periods using the unilateral carotid artery occlusion model of stroke in gerbils. The levels of glutamate, aspartate and GABA in ischemic hemisphere were increased significantly by 10 min of ischemia and later declined with time. Reperfusion for 30 min following 10 min. of ischemia further enhanced the levels of glutamate and aspartate. Increase in GABA levels were found during early periods of reperfusion. Regional variations in the changes of amino acids' levels were noticed following ischemia. Hippocampus showed the highest increase in glutamate levels followed by striatum and cerebral cortex. Aspartate levels in striatum and hippocampus increased during 10 min ischemia (46% and 30%) and recirculation (70% and 79%), whereas in cerebral cortex the levels were doubled only during recirculation. Ischemia induced elevations of GABA levels were observed in cerebral cortex (68%) and in hippocampus (30%), and the levels were normalized during recirculation. No changes in GABA levels were found in striatum. It is suggested that the large increase in the levels of excitatory neurotransmitter amino acids in brain regions specially in hippocampus during ischemia and recirculation may be one of the causal factors for ischemic brain damage.  相似文献   

4.
Rats received a solution of sodium barbitone as their only drinking fluid for 33 and 42–44 weeks. In three groups (A3, A12 and A30) the barbitone solution was withheld and replaced by water 3, 12 and 30 days respectively before death. Two other groups consisted of animals drinking barbitone until death (B) and untreated controls (C). Abstinence convulsions were recorded by jiggle cages. Thirty nmol of tritium-labelled choline ([3H]Ch) were injected i.v. and the rats were killed by decapitation 1 min later. A significantly higher content of tritium-labelled acetylcholine ([3H]ACh) was found in the cerebellum + medulla oblongata + midbrain of rats receiving barbitone until death (group B) (+22%) and abstinent for 3 days (+54%) (group A3) compared with group C. The [3H]ACh content was also significantly increased in the hippocampus + cortex of rats abstinent for 3 days (+23%). In the striatum no significant effect on [3H]ACh content was found in any of the groups. The ratio [3H]ACh/[3H]Ch was significantly increased in the cerebellum + medulla oblongata + midbrain of rats in group B and A3 and in the hippocampus + cortex in group A3. These results might indicate an increased turnover of ACh. The effect of long-term barbitone treatment on the enzyme activities of brain choline acetyltransferase and acetylcholinesterase was also studied but no significant effect was found.  相似文献   

5.
The synthesis rate of brain acetylcholine (ACh) was estimated in mice following i.v. administration of [3H]choline (Ch). The measurements were performed 1 min after the tracer injection, using the [3H]ACh/[3H]Ch specific radioactivity ratio as an index of ACh synthesis rate. Endogenous and labeled Ch and ACh were quantified using HPLC methodology. Oxotremorine and physostigmine (0.5 mg/kg, i.p.) increased the steady state concentration of brain ACh by +130% and 84%, respectively and of Ch by +60% (oxotremorine); they decreased ACh synthesis by 62 and 55%, respectively. By contrast, scopolamine (0.7 mg/kg, i.p.) decreased the cerebral content of Ch by –26% and of ACh by –23% without enhancing the synthesis of ACh. The results show the utility of HPLC methodology in the investigation of ACh turnover.  相似文献   

6.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH-d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

7.
Acetylcholine Releases Prostaglandins from Brain Slices Incubated In Vitro   总被引:5,自引:3,他引:2  
A variety of neurotransmitters elicit a phosphoinositide response in the CNS; however, their effects on prostaglandin (PG) formation in the brain are not well characterized. In the present study, we investigated the effect of acetylcholine (ACh) on the synthesis of PGs E and F in slices from various regions of guinea pig brain incubated in glucose-fortified Krebs-Henseleit bicarbonate saline. Slices were prewashed in the presence of 1% albumin to reduce basal PG levels followed by incubation for 30 min at 37 degrees C in the presence or absence of ACh. Under these conditions, 5 mM ACh significantly increased the efflux of PGE and PGF from brain regions enriched in muscarinic cholinergic receptors, i.e., cerebral cortex, temporal cortex, corpus striatum, and hippocampus. Depolarization by 45 mM KCl also significantly enhanced PG synthesis, and the relative magnitude of the effect was similar to that of ACh. The stimulation of PG synthesis by ACh was inhibited by 20 microM atropine, whereas the K+-induced stimulation was not. The effects of potassium and ACh were additive at maximally effective ACh concentrations, an observation that suggests that ACh and K+ increase PG efflux through independent mechanisms. Norepinephrine, histamine, and serotonin, three other neurotransmitters that evoke a phosphoinositide response in the brain, were ineffective in stimulating PG release from brain cortex slices.  相似文献   

8.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH‐d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

9.
Lipid peroxides, quantitated as lipid conjugated dienes, and (Na+,K+)-ATPase activity were assayed concurrently in brains of control rats and in three groups subjected to 30 min of reversible forebrain ischemia followed by 0, 1, and 4 hr of recirculation. Multiple small samples were taken from lateral, dorsolateral and medial cortex, hippocampus, thalamus and striatum following in situ freezing. (Na+,K+)-ATPase activity was elevated in hippocampus, dorsolateral and lateral cortex (P<0.10) and in thalamus (P<0.05) following 30 min ischemia. ATPase activity in medial cortex continued to increase during the first 1 hr of recirculation (P<0.10). Following 4 hr of recirculation, decreased enzyme activities were observed in all of these regions (lateral cortex and hippocampus,P<0.10). No changes in ATPase activity were observed in samples from striatum. Of the regional samples assayed for lipid peroxide content, the incidence of conjugated dienes as a function of recirculation time was 6% (0 hr), 23% (1 hr), and 17% (4 hr). For these samples, plots of normalized ATPase activity vs. tissue conjugated diene concentration revealed that normalized ATPase activity varied with recirculation time, but was independent of the magnitude of the lipid peroxidative process (expressed in terms of tissue conjugated diene concentration). These results suggest that disturbances in membrane structure and function presumed to arise from lipid peroxidation are not responsible for the behavior of the ATPase under the current in vivo conditions.  相似文献   

10.
Abstract: An existing method for measuring acetylcholine (ACh) and choline (Ch) is shown to be useful formeasuring the turnover rate of ACh in mouse brain. Methl-[3H]Ch is injected into mice. They are killed atdifferent times by microwave irradiation and Ch and AChextracted and separated by reverse-phase HPLC. Ch andACh are converted to hydrogen peroxide by a post-column enzyme reaction. Hydrogen peroxide, which isdirectly related to the tissue content of Ch or ACh, isdetermined electrochemically. The fractions that corre-spond to the detector response for Ch and ACh are col-lected for the measurement of radioactivity. In this wayspecific radioactivities of endogenous Ch and ACh areestimated in the same sample. We used the specific ra-dioactivity values determined by this procedure to esti-mate the turnover of ACh for striatum, cerebral cortex, and hippocampus of the mouse.  相似文献   

11.
Abstract: Delayed increases in the levels of an endogenous N-methyl-D-aspartate receptor agonist, quinolinic acid (QUIN), have been demonstrated following transient ischemia in the gerbil and were postulated to be secondary to induction of indoleamine-2,3-dioxygenase (IDO) and other enzymes of the L-tryptophan-kynurenine pathway. In the present study, proportional increases in IDO activity and QUIN concentrations were found 4 days after 10 min of cerebral ischemia, with both responses in hippocampus > striatum > cerebral cortex > thalamus. These increases paralleled the severity of local brain injury and inflammation. IDO activity and QUIN concentrations were unchanged in the cerebellum of postischemic gerbils, which is consistent with the preservation of blood flow and resultant absence of pathology in this region. Blood QUIN and L-kynurenine concentrations were not affected by ischemia. Brain tissue QUIN levels at 4 days postischemia exceeded blood concentrations, minimizing a role for breakdown of the blood–brain barrier. Marked increases in the activity of kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase were also detected in hippocampus but not in cerebellum on day 4 of recirculation. In vivo synthesis of [13C6]QUIN was demonstrated, using mass spectrometry, in hippocampus but not in cerebellum of 4-day postischemic animals 1 h after intracisternal administration of L-[13C6]tryptophan. However, accumulation of QUIN was demonstrated in both cerebellum and hippocampus of control gerbils following an intracisternal injection of 3-hydroxyanthranilic acid, which verifies the availability of precursor to both regions when administered intracisternally. Notably, although IDO activity and QUIN concentrations were unchanged in the cerebellum of ischemic gerbils, both IDO activity and QUIN content were increased in cerebellum to approximately the same degree as in hippocampus, striatum, cerebral cortex, and thalamus 24 h after immune stimulation by systemic pokeweed mitogen administration, demonstrating that the cerebellum can increase IDO activity and QUIN content in response to immune activation. No changes in kynurenic acid concentrations in either hippocampus, cerebellum, or cerebrospinal fluid were observed in the postischemic gerbils compared with controls, in accordance with the unaffected activity of kynurenine aminotransferase activity. Collectively, these results support roles for IDO, kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase in accelerating the conversion of L-tryptophan and other substrates to QUIN in damaged brain regions following transient cerebral ischemia. Immunocytochemical results demonstrated the presence of macrophage infiltrates in hippocampus and other brain regions that parallel the extent of these biochemical changes. We hypothesize that increased kynurenine pathway metabolism after ischemia reflects the presence of macrophages and other reactive cell populations at sites of brain injury.  相似文献   

12.
The in vivo effects of beta-bungarotoxin (beta-BT) on the acetylcholine (ACh) system were studied in the whole cerebrum and in different brain regions. The effect of beta-BT on cerebral ACh and choline (Ch) contents was time-dependent. The results show that a single intracerebroventricular injection of 1 microgram toxin increased both the ACh and Ch contents in the cortex, hippocampus, and cerebellum, while in the striatum the ACh level was decreased. Ten nanograms of toxin injected into the lateral ventricle twice, on the first and third days, led to a reduced ACh level 2 days after the last treatment. In animals treated with the same dose three times, on the first, third, and fifth days, and sacrificed 2 days after the last injection, the choline acetyltransferase and acetylcholinesterase activities were reduced and the number of muscarinic acetylcholine receptors was decreased. A biphasic effect of the toxin was therefore demonstrated. It is suggested that in the first phase of the toxin effect the increased levels of ACh and Ch may be due to the inhibition of neuronal transmission, while in the second phase, when the elements of the ACh system are reduced, the neuronal degenerating effect of beta-BT plays a significant role.  相似文献   

13.
In order to investigate changes in energy metabolism, neurotransmitters, and membrane disorder accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats was utilized. We measured concentrations of ATP, phosphocreatine (PCr), lactate (Lac), glucose (Glu), acetylcholine (ACh), choline (Ch), and -aminobutyric acid (GABA) in both the cerebral cortex and the subcortical regions after 1 h ischemia, 2 h ischemia, and 2 h reflow following 2 h ischemia, and then examined changes in concentrations of these substances during and after incomplete cerebral ischemia. Also examined were interrelations of changes in these substance levels during ischemia. In the cerebral cortex, levels of ATP, PCr, Glu, and ACh decreased, and levels of Lac, Ch, and GABA increased during ischemia. After recirculation, levels of ATP, PCr, Ch, and GABA tended to return to the normal range. On the other hand, the Lac level remained in the ischemic range and the Glu level rose and greatly exceeded the normal range. With regard to ACh, most animals showed normal levels but some exceeded the normal range. Changes in the subcortical regions were qualitatively the same as those in the cerebral cortex during and after ischemia (except with Glu), but only smaller in degrees. Glu levels remained unchanged during ischemia. Correlation of the levels of these substances in the cerebral cortex was examined using normal and ischemic values. A high correlation was generally observed between ATP and other substance levels. The relations between ATP and either PCr or Glu levels were linear. The relation between ATP and ACh levels was logarithmic. The relations between ATP and either Lac, Ch, or GABA levels were exponential. Namely, ACh, Lac, Ch, and GABA levels stayed constant until ATP fell to some fixed low level, suggesting the existence of a threshold. High correlations were also observed among Lac, Ch, and GABA levels.  相似文献   

14.
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and cortex after 5 min of ischemia used as a preconditioning and subsequent reperfusion, by spectrophotometric methods. In all ischemia-reperfusion groups (5 h, 1 and 2 days of reperfusion), CuZn-SOD activities were found to be increased if compared to the sham operated controls. The increase was significant (P < 0.05) in all reperfusion groups, particularly after 5 h of reperfusion (3 times) in all studied brain regions; the largest increase was detected in the more vulnerable hippocampus and striatum. Very similar changes were found in Mn-SOD activity. The activity of CAT was increased too, but reached the peak of postischemic activity 24 h after ischemia. Our attempt to understand the mechanisms of increased SOD and CAT activities by application of protein synthesis inhibitor cycloheximide showed that this increase was caused by de novo synthesis of enzymes during first hours after ischemia. Our findings indicate that both major endogenous antioxidant enzymes SOD and CAT are synthesized as soon as 5 h after ischemia. In spite of significant upregulation of these enzymes a large number of neurons in selectively vulnerable CA1 region of hippocampus undergoes to neurodegeneration within 7 days after ischemia.  相似文献   

15.
The effect of transient cerebral ischemia on acetylcholinesterase (AChE) synthesis was studied in rats by a modified pharmacohistochemical method. The procedure involved in vivo irreversible inhibition of AChE by administration of the inhibitor diisopropyl fluorophosphate (DFP; 1.2 mg/kg b.w., i.m.) 1 h before 30 min forebrain ischemia (the four-vessel occlusion model). At the onset of ischemia, 70-75% of AChE was inhibited in the brain. Recirculation was followed by histochemical and biochemical investigations of newly synthesized AChE in the striatum, septum, cortex and hippocampus. Control sham-operated animals were treated with the same dose of DFP. For correlation, rats not treated with DFP were subjected to the same ischemic procedures and investigated simultaneously. In these rats, significant decrease in AChE activity was found in the striatum, septum and hippocampus during 24 h recirculation. In DFP treated rats, ischemia markedly depressed resynthesis of AChE; after 4 h recirculation, AChE activity was decreased by 45-60% in all investigated areas in comparison with controls and the AChE histochemistry showed only slightly stained neurons in the striatum and septum. Twenty-four hours after ischemia, these neurons were densely stained and the increase in AChE activity indicated a partial recovery of the enzyme synthesis. These results suggest that the depression of AChE synthesis after forebrain ischemia is probably transient, not accompanied by cholinergic neuron degeneration.  相似文献   

16.
Choline Transport and Metabolism in Soman-or Sarin-Intoxicated Brain   总被引:2,自引:1,他引:1  
The metabolism and blood-brain transport of choline (Ch) were investigated in perfused canine brain under control conditions and for 60 min after inhibition of brain cholinesterases by the organophosphorus (OP) compounds soman (pinacolylmethylphosphonofluoridate). Ch and acetylcholine (ACh) in blood and brain samples were analyzed using gas chromatography-mass spectrometry methods. Net transport of Ch was determined by Ch analysis in arterial and venous samples. Unidirectional transport of [3H]Ch was determined using the indicator dilution method. During control perfusion periods of 90 min, net efflux of brain Ch occurred at a rate of 1.6 +/- 0.4 nmol/g/min, and the Ch content of the recirculated perfusate increased 10-fold to approximately 8 microM. Brain Ch content increased in proportion to the increase in perfusate Ch level, but brain ACh was unaltered. Rapid administration of soman (100 micrograms) or sarin (400 micrograms) into the arterial perfusate after a 40-min control period resulted in a greater than 10-fold increase in ACh content in cerebral cortex, brainstem, and hippocampus. The ACh content of cerebellum increased only slightly. The Ch level in all four brain regions studied also increased two- to fourfold above control levels. Ch efflux from brain, however, decreased to 0.2 +/- 0.1 nmol/g/min during the 60 min after OP exposure. Unidirectional influx of [3H]Ch was 0.49 +/- 0.07 nmol/g/min before and did not change significantly 10 or 40 min after OP exposure, thus indicating that the Ch transporter of the brain endothelial cell is not directly inhibited.2+ Based on these results, it is proposed that (a) efflux of brain Ch occurs from the extracellular compartment, which becomes depleted when ACh breakdown is inhibited;(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Xu XH  Zhang SM  Yan WM  Li XR  Zhang HY  Zheng XX 《Life sciences》2006,78(7):704-712
The aim of this study was to investigate the role of apoptosis or necrosis in the development of delayed infarct, and the relationship between the level of XIAP gene, caspase-3 activation and ischemic cell death following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAo) for 50 min and reperfusion for 0.5, 4, 8, 24 h, 3, 7, 14 days. On TTC-stained coronal sections, delayed infarct was observed to develop in the whole MCA territory, especially in frontoparietal cortex after ischemia. Near total infarct was shown in striatum 24 h after MCAo, while delayed infarct was evident in the cortex. By day 3, the infarct had progressively expanded to the nearly whole area of the frontoparietal cortex. Flow cytometric analysis of Annexin-V (marks apoptosis) and PI (propidium iodide, marks necrosis) labeling cells showed that MCAo dominantly induced necrosis in ischemic core, striatum. Apoptosis contributed to delayed infarct and cell death in the border zone, dorsolateral cortex and hippocampus. The time-course of caspase-3 activation was consistent with the changes of apoptosis and infarct following MCAo. Further RT-PCR experiments indicated that there was a biphasic regulation of XIAP in time- and region-dependent manner after ischemia. In the infarct core (striatum), following a transient and slight increase during 0.5 h to 4 h post-MCAo, expression of XIAP mRNA markedly decreased. On the other hand, a longer and larger upregulation of XIAP was observed at early time points in border zone (0.5 to 8 h, in dorsolateral cortex; 0.5 to 24 h in hippocampus), then the level of XIAP reduced. A negative correlation was observed between apoptosis and regulation of XIAP gene in these regions. Our findings suggest a possible association between expression of XIAP gene, apoptosis and delayed infarct following ischemia.  相似文献   

18.
To determine the role of nerve growth factor (NGF) in ischemic brain damage, we measured the temporal and regional changes in the level of NGF in the hippocampal subfields, the cerebral cortex, the striatum, and the septum at 1, 2, 7, and 30 days after transient forebrain ischemia using a highly sensitive sandwich-type enzyme immunoassay system for the beta-subunit of mouse 7S NGF (beta-NGF). We also analyzed glial fibrillary acidic protein immunoreactivity in the hippocampus to ascertain the contribution of reactive astrocytes to NGF production after an ischemic insult. In the CA1 subfield of the hippocampus, the level of beta-NGF decreased slightly 2 days after ischemia (not significant), at which time CA1 pyramidal cell loss began to occur, and increased by 40% 30 days after ischemia (p less than 0.05). A marked increase in glial fibrillary acidic protein-positive astrocytes in the CA1 subfield 2-30 days after ischemia suggests that the reactive astrocytes participated in a gradual increase in the level of beta-NGF after recirculation. The level of beta-NGF in the dentate gyrus decreased transiently 2 days (p less than 0.05) and 7 days (p less than 0.01) after ischemia, followed by recovery to the level of control animals 30 days after ischemia. The level of beta-NGF in the septum gradually decreased 7 days (-27%, p less than 0.05) and 30 days (-43%, p less than 0.01) after ischemia. The levels of beta-NGF in the cerebral cortex and striatum remained unaltered throughout the observation period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
It has been reported that N-methylcarbamylcholine (MCC), a nicotinic agonist, binds to central nicotinic receptors and causes an increase of acetylcholine (ACh) release from certain central cholinergic nerve terminals. The present experiments determine whether these two phenomena change in response to the chronic administration of nicotine, a procedure known to result in an increase in nicotinic binding sites. Chronic nicotine caused a brain region-specific up-regulation of [3H]MCC sites; binding increased in the frontal cortex, parietal cortex, striatum, and hippocampus, but not in the occipital cortex or cerebellum. The effect of nicotine was selective to nicotinic binding sites, because muscarinic sites, both M1 ([ 3H]pirenzepine) and M2 ([3H]ACh), were unaffected by chronic nicotine treatment. MCC increased the release of ACh from the frontal cortex and hippocampus by a calcium-dependent mechanism; MCC did not alter ACh release from striatum or occipital cortex of control animals. The MCC-induced increase in ACh release was not apparent in those animals which had been treated with nicotine. There was a partial recovery of nicotinic autoreceptor function when animals were allowed to recover (4 days) following chronic nicotine treatment, but the density of binding sites remained increased compared to control. Chronic nicotine did not change the potassium-evoked release of ACh from the frontal cortex or hippocampus, but decreased this measure from striatum. It also decreased the ACh content of the striatum, but not that of the cortex or the hippocampus; the activity of choline acetyltransferase was not altered in any of the regions tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A growing body of evidence supports the role of free radicals in triggering the functional and metabolic disturbances following transient cerebral ischemia. This study was designed to evaluate whether the extent of reperfusion-induced inhibition of protein synthesis initiation as well as tissue injury can be reduced by Tanakan (Ginkgo biloba extract, EGb 761) (Beaufour-Ipsen Industrie). Rats received Tanakan in the dose of 40 mg/kg/day for 7 days before surgical intervention. Transient forebrain ischemia was induced by 4-vessel occlusion. Rats were subjected to 20 min of ischemia followed by 30 min, 4 h or 7 days of reperfusion. Protein synthesis rate, reinitiation ability and neurodegeneration in the frontal cortex and hippocampus were measured by the incorporation of radioactively labelled leucine into polypeptide chains in postmitochondrial supernatants and by Fluoro-Jade B staining. The protective effect was observed, concerning both the protein synthesis and the number of surviving neurons, in the Tanakan-treated groups. Tanakan significantly reduced the ischemia/reperfusion-induced inhibition of translation in the neocortex as well as in the highly sensitive hippocampus. Our results indicate that free radicals play an important role in the development of reperfusion-induced injury, and the treatment of ischemic and reperfused brain with free radical scavengers may reduce the severity of reperfusion damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号