首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD8(+) T cells are critical for the clearance of acute polyomavirus infection and the prevention of polyomavirus-induced tumors, but the antigen-presenting cell(s) involved in generating polyomavirus-specific CD8(+) T cells have not been defined. We investigated whether dendritic cells and macrophages are permissive for polyomavirus infection and examined their potential for inducing antiviral CD8(+) T cells. Although dendritic cells and macrophages both supported productive polyomavirus infection, dendritic cells were markedly more efficient at presenting the immunodominant viral epitope to CD8(+) T cells. Additionally, infected dendritic cells, but not infected macrophages, primed anti-polyomavirus CD8(+) T cells in vivo. Treatment with Flt3 ligand, a hematopoietic growth factor that dramatically expands the number of dendritic cells, markedly enhanced the magnitude of virus-specific CD8(+) T-cell responses during acute infection and the pool of memory anti-polyomavirus CD8(+) T cells. These findings suggest that virus-infected dendritic cells induce polyomavirus-specific CD8(+) T cells in vivo and raise the potential for their use as cellular adjuvants to promote CD8(+) T cell surveillance against polyomavirus-induced tumors.  相似文献   

2.
Human B cells and plasmacytoid dendritic cells recognize CpG motifs within microbial DNA via Toll-like receptor 9. Two functionally distinct types of CpG motif containing oligonucleotides (CpG ODN) have been described, CpG-A and CpG-B. In contrast to CpG-B, CpG-A induces high amounts of type I IFN (IFN-alpha and IFN-beta) in plasmacytoid dendritic cells. In the present study, we examined the effects of CpG-A on human primary monocytes. In PBMC stimulated with CpG-A and GM-CSF, monocytes showed excellent survival, increased in size and granularity, and within 3 days developed a dendritic cell-like phenotype that was characterized by down-regulation of CD14, partial up-regulation of CCR7, and an increased surface expression of costimulatory and Ag-presenting molecules. This effect could be inhibited by a combination of blocking Abs to type I IFN, and no such CpG-A-induced changes were observed in purified monocytes. Although IL-12 production by this dendritic cell-like phenotype required additional stimulation with CD40 ligand, this cell type spontaneously up-regulated IL-15 expression. Consistent with the known effect of IL-15 on effector and memory CD8 T cells, the frequency of CCR7(-)/CD45RA(-) CD8 T cells was selectively increased in allogeneic T cell assays. Furthermore, this dendritic cell type was more potent to support both the generation and the IFN-gamma production of autologous influenza matrix peptide-specific memory CD8 T cells as compared with dendritic cells generated in the presence of GM-CSF and IL-4. In conclusion, monocytes exposed to the cytokine milieu provided by CpG-A rapidly develop a dendritic cell-like phenotype that is well equipped to support CD8 T cell responses.  相似文献   

3.
Naive T cells undergo robust proliferation in lymphopenic conditions, whereas they remain quiescent in steady-state conditions. However, a mechanism by which naive T cells are kept from proliferating under steady-state conditions remains unclear. In this study, we report that memory CD4 T cells are able to limit naive T cell proliferation within lymphopenic hosts by modulating stimulatory functions of dendritic cells (DC). The inhibition was mediated by IL-27, which was primarily expressed in CD8(+) DC subsets as the result of memory CD4 T cell-DC interaction. IL-27 appeared to be the major mediator of inhibition, as naive T cells deficient in IL-27R were resistant to memory CD4 T cell-mediated inhibition. Finally, IL-27-mediated regulation of T cell proliferation was also observed in steady-state conditions as well as during Ag-mediated immune responses. We propose a new model for maintaining peripheral T cell homeostasis via memory CD4 T cells and CD8(+) DC-derived IL-27 in vivo.  相似文献   

4.
Previous studies suggested that depending on their maturation state, dendritic cells (DC) could either induce T cell tolerance (immature and semimature DC) or T cell activation (mature DC). Pretreatment of C57BL/6 mice with encephalitogenic myelin oligodendrocyte glycoprotein (MOG)(35-55) peptide-loaded semimature DC protected from MOG-induced autoimmune encephalomyelitis. This protection was mediated by IL-10-producing CD4 T cells specific for the self Ag. Here we show that semimature DC loaded with the MHC class II-restricted nonself peptide Ag (OVA) induce an identical regulatory T cell cytokine pattern. However, semimature DC loaded simultaneously with MHC class II- and MHC class I-restricted peptides, could efficiently initiate CD8 T cell responses leading to autoimmune diabetes in a TCR-transgenic adoptive transfer model. Double-peptide-loaded semimature DC also induced simultaneously in the same animal partially activated CD8 T cells with cytolytic function as well as protection from MOG-induced autoimmune encephalomyelitis. Our study suggests that the decision between tolerance and immunity not only depends on the DC, but also on the type and activation requirements of the responding T cell.  相似文献   

5.
CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.  相似文献   

6.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

7.
Encounter with Ag during chronic infections results in the generation of phenotypically and functionally heterogeneous subsets of Ag-specific CD8 T cells. Influenza, an acute infection, results in the generation of similar CD8 T cell heterogeneity, which may be attributed to long-lived depots of flu Ags that stimulate T cell proliferation well after virus clearance. We hypothesized that the heterogeneity of flu-specific CD8 T cells and maintenance of T cell memory required the recruitment of new CD8 T cells to persistent depots of flu Ag, as was the case for flu-specific CD4 T cell responses. However, robust expansion and generation of highly differentiated cytolytic effectors and memory T cells only occurred when naive CD8 T cells were primed during the first week of flu infection. Priming of new naive CD8 T cells after the first week of infection resulted in low numbers of poorly functional effectors, with little to no cytolytic activity, and a negligible contribution to the memory pool. Therefore, although the presentation of flu Ag during the late stages of infection may provide a mechanism for maintaining an activated population of CD8 T cells in the lung, few latecomer CD8 T cells are recruited into the functional memory T cell pool.  相似文献   

8.
CD8(+) T cells provide broad immunity to viruses, because they are able to recognize all types of viral proteins. Therefore, the development of vaccines capable of inducing long-lived memory CD8(+) T cells is desired to prevent diseases, especially those for which no vaccines currently exist. However, in designing CD8(+) T cell vaccines, the role of CD4(+) T cells in the induction and maintenance of memory CD8(+) T cells remains uncertain. In the present study, the necessity or not of CD4(+) T cells in the induction and maintenance of memory CD8(+) T cells was investigated in mice immunized with liposome-coupled CTL epitope peptides. When OVA-derived CTL epitope peptides were chemically coupled to the surfaces of liposomes and inoculated into mice, both primary and secondary CTL responses were successfully induced. The results were further confirmed in CD4(+) T cell-eliminated mice, suggesting that CD4(+) T cells were not required for the generation of memory CD8(+) T cells in the case of immunization with liposome-coupled peptides. Thus, surface-linked liposomal antigens, capable of inducing long-lived memory CD8(+) T cells without the contribution of CD4(+) T cells, might be applicable for the development of vaccines to prevent viral infection, especially for those viruses that evade humoral immunity by varying their surface proteins, such as influenza viruses, HIV, HCV, SARS coronaviruses, and Ebola viruses.  相似文献   

9.
Radiotherapy is an important treatment for cancer. The main mode of action is thought to be the irreversible damage to tumor cell DNA, but there is evidence that irradiation mobilizes tumor-specific immunity, and recent studies showed that the efficacy of high-dose radiotherapy depends on the presence of CD8(+) T cells. We show in this study that the efficacy of radiotherapy given as a single, high dose (10 Gy) crucially depends on dendritic cells and CD8(+) T cells, whereas CD4(+) T cells or macrophages are dispensable. We show that local high-dose irradiation results in activation of tumor-associated dendritic cells that in turn support tumor-specific effector CD8(+) T cells, thus identifying the mechanism that underlies radiotherapy-induced mobilization of tumor-specific immunity. We propose that in the absence of irradiation, the activation status of dendritic cells rather than the amount of tumor-derived Ag is the bottleneck, which precludes efficient anti-tumor immunity.  相似文献   

10.
The ability of the dendritic cell (DC) subsets, CD8alpha+ and CD8alpha- DCs, to initiate a CD8 T cell response or to activate memory CD8 T cells and generate effector CD8 T cells has been controversial. In this study, we analyse the capacity of splenic DC subsets to induce CD8 T cell responses to a CD8 T cell epitope (pb9) of a malaria antigen. The administration of peptide-pulsed CD8alpha- or CD8alpha+ DCs primes and boosts a primed CD8 T cell response against the malaria epitope. In vitro, depletion of CD11c(+) DCs from mouse splenocytes, immunised with recombinant vaccinia virus Ankara (MVA) expressing pb9 epitope, significantly reduced the generation of pb9-specific IFNgamma producing effector CD8 T cells, indicating that splenic DCs are involved in the development of pb9-specific IFNgamma producing effector cells. Taken together, this result shows that both DC subsets have the ability to prime and boost CD8 T cell responses and are involved in the activation of memory CD8 T cells.  相似文献   

11.
Mouse spleen contains three distinct mature dendritic cell (DC) populations (CD4(+)8(-), CD4(-)8(-), and CD4(-)8(+)) which retain a capacity to take up particulate and soluble AGS: Although the three splenic DC subtypes showed similar uptake of injected soluble OVA, they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells. For class II MHC-restricted presentation to CD4 T cells, the CD8(-) DC subtypes were more efficient, but for class I MHC-restricted presentation to CD8 T cells, the CD8(+) DC subtype was far more effective. This differential persisted when the DC were activated with LPS. The CD8(+) DC are therefore specialized for in vivo cross-presentation of exogenous soluble Ags into the class I MHC presentation pathway.  相似文献   

12.
Cancer immunosurveillance failure is largely attributed to insufficient activation signals and dominant inhibitory stimuli for tumor Ag (TAg)-specific CD8 T cells. CD4 T cells have been shown to license dendritic cells (DC), thereby having the potential for converting CD8 T cell responses from tolerance to activation. To understand the potential cooperation of TAg-specific CD4 and CD8 T cells, we have characterized the responses of naive TCR transgenic CD8 and CD4 T cells to poorly immunogenic murine tumors. We found that whereas CD8 T cells sensed TAg and were tolerized, the CD4 T cells remained ignorant throughout tumor growth and did not provide help. This disparity in responses was due to normal TAg MHC class I cross-presentation by immature CD8alpha+ DC in the draining lymph node, but poor MHC class II presentation on all DC subsets due to selective inhibition by the tumor microenvironment. Thus, these results reveal a novel mechanism of cancer immunosubversion, in which inhibition of MHC-II TAg presentation on DC prevents CD4 T cell priming, thereby blocking any potential for licensing CD8alpha+ DC and helping tolerized CD8 T cells.  相似文献   

13.
TNF-α and its two receptors (TNFR1 and 2) are known to stimulate dendritic cell (DC) maturation and T cell response. However, the specific receptor and mechanisms involved in vivo are still controversial. In this study, we show that in response to an attenuated mouse hepatitis virus infection, DCs fail to mobilize and up-regulate CD40, CD80, CD86, and MHC class I in TNFR1(-/-) mice as compared with the wild-type and TNFR2(-/-) mice. Correspondingly, virus-specific CD8 T cell response was dramatically diminished in TNFR1(-/-) mice. Adoptive transfer of TNFR1-expressing DCs into TNFR1(-/-) mice rescues CD8 T cell response. Interestingly, adoptive transfer of TNFR1-expressing naive T cells also restores DC mobilization and maturation and endogenous CD8 T cell response. These results show that TNFR1, not TNFR2, mediates TNF-α stimulation of DC maturation and T cell response to mouse hepatitis virus in vivo. They also suggest two mechanisms by which TNFR1 mediates TNF-α-driven DC maturation, as follows: a direct effect through TNFR1 expressed on immature DCs and an indirect effect through TNFR1 expressed on naive T cells.  相似文献   

14.
The sizes of peripheral T cell pools are regulated by competition for environmental signals within a given ecological T cell niche. Cytokines and MHC molecules have been identified as resources for which naive T cells compete to proliferate homeostatically in lymphopenic hosts to fill up their respective compartments. However, it still remains unclear to what extent CD4 and CD8 T cells intercompete for these resources and which role dendritic cells (DC) play in this scenario. Using transgenic mice in which only DC express MHC class I, we demonstrate that this type of APC is sufficient to trigger complete homeostatic proliferation of CD8 T cells in vivo. However, normal numbers of endogenous naive CD4 T cells, but not CD25(+)CD4(+) T regulatory cells, efficiently suppress this expansion in vivo. These findings identify DC as a major resource and a possible target for homeostatic competition between naive CD4 and CD8 T cells.  相似文献   

15.
Activation of invariant NK T (iNKT) cells with the glycolipid alpha-galactosylceramide promotes CD8(+) cytotoxic T cell responses, a property that has been used to enhance the efficacy of antitumor vaccines. Using chimeric mice, we now show that the adjuvant properties of iNKT cells require that CD40 triggering and Ag presentation to CD8(+) T cells occur on the same APCs. We demonstrate that injection of alpha-galactosylceramide triggers CD70 expression on splenic T cell zone dendritic cells and that this is dependent on CD40 signaling. Importantly, we show that blocking the interaction between CD70 and CD27, its costimulatory receptor on T cells, abrogates the ability of iNKT cells to promote a CD8(+) T cell response and abolishes the efficacy of alpha-GalCer as an adjuvant for antitumor vaccines. These results define a key role for CD70 in linking the innate response of iNKT cells to the activation of CD8(+) T cells.  相似文献   

16.
Dendritic cells play an important role in the development of immune responses in malaria, but the contribution of plasmacytoid dendritic cells (pDC) to CD4 T cell activation and immunopathology is unknown. We have investigated pDC in a Plasmodium chabaudi infection in mice. During infection, pDC increased in number and transiently up-regulated expression of Major Histocompatibility Complex class II and co-stimulatory molecules. However, in contrast to classical CD11chigh DC, pDC could not phagocytose parasites or process parasite proteins, to activate CD4 T cells. Activation of naïve pDC, but not CD11chigh DC, by infected red blood cells induced IFNα in vitro, which was dependent on the Toll-like receptor, TLR9. However, inactivation of TLR9 in knock-out mice had no effect on a P. chabaudi infection suggesting that TLR9 was not crucial for parasite elimination or pathology. Neither pDC nor IFNαβ were essential for parasite clearance as mice depleted of pDC or IFNαβ Receptor-knock-out mice could control infection. However, these mice lost significantly more weight than untreated or wild-type mice. We conclude that classical DC are the major antigen-presenting cells for CD4 T cells in this infection, but that pDC and IFNαβ may play minor roles in controlling the magnitude of acute stage pathology.  相似文献   

17.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

18.
Mediators produced by the airway epithelium control the activation, recruitment, and survival of pulmonary dendritic cells (DC) that present antigen to CD4+ T cells during the genesis and exacerbation of allergic asthma. The epithelial-derived acute phase protein, serum amyloid A (SAA), induces DC maturation and TH17 polarization. TH17 responses are associated with severe forms of allergic asthma that are poorly controlled by corticosteroids. We sought to determine whether SAA would enhance the survival of DC during serum starvation and could then contribute to the development of a glucocorticoid-resistant phenotype in CD4+ T cells. Bone marrow-derived dendritic cells (BMDC) that were serum starved in the presence of SAA were protected from activation of caspase-3 and released less lactate dehydrogenase. In comparison with untreated serum-starved BMDC, treatment with SAA downregulated mRNA expression of the pro-apoptotic molecule Bim, increased production of the pro-survival heat shock protein 70 (HSP70), and induced secretion of pro-inflammatory cytokines. SAA-treated BMDC that were serum starved for 48 h remained capable of presenting antigen and induced OTII CD4+ T cells to secrete IL-17A, IL-17F, IL-21, IL-22, and IFNγ in the presence of ovalbumin. IL-17A, IL-17F, IL-21, and IFNγ production occurred even when the CD4+ T cells were treated with dexamethasone (Dex), whereas glucocorticoid treatment abolished cytokine secretion by T cells cocultured with untreated serum-starved BMDC. Measurement of Dex-responsive gene expression demonstrated CD4+ T cells as the target of glucocorticoid hyperresponsiveness manifest as a consequence of BMDC stimulation by SAA. Finally, allergic airway disease induced by SAA and antigen inhalation was unresponsive to Dex treatment. Our results indicate that apo-SAA affects DC to both prolong their viability and increase their inflammatory potential under apoptosis-inducing conditions. These findings reveal mechanisms through which SAA enhances the CD4+ T-cell-stimulating capacity of antigen-presenting cells that may actively participate in the pathogenicity of glucocorticoid-resistant lung disease.  相似文献   

19.
Memory CD8+ T cells protect dendritic cells from CTL killing   总被引:1,自引:0,他引:1  
CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.  相似文献   

20.
Chlamydia trachomatis is a global human pathogen causing diseases ranging from blinding trachoma to pelvic inflammatory disease. To explore how innate and adaptive immune responses cooperate to protect against systemic infection with C. trachomatis L2, we investigated the role of macrophages (Mphi) and dendritic cells (DCs) in the stimulation of C. trachomatis-specific CD8(+) T cells. We found that C. trachomatis infection of Mphi and DCs is far less productive than infection of nonprofessional APCs, the typical targets of infection. However, despite the limited replication of C. trachomatis within Mphi and DCs, infected Mphi and DCs process and present C. trachomatis CD8(+) T cell Ag in a proteasome-dependent manner. These findings suggest that although C. trachomatis is a vacuolar pathogen, some Ags expressed in infected Mphi and DCs are processed in the host cell cytosol for presentation to CD8(+) T cells. We also show that even though C. trachomatis replicates efficiently within nonprofessional APCs both in vitro and in vivo, Ag presentation by hematopoietic cells is essential for initial stimulation of C. trachomatis-specific CD8(+) T cells. However, when DCs infected with C. trachomatis ex vivo were adoptively transferred into naive mice, they failed to prime C. trachomatis-specific CD8(+) T cells. We propose a model for priming C. trachomatis-specific CD8(+) T cells whereby DCs acquire C. trachomatis Ag by engulfing productively infected nonprofessional APCs and then present the Ag to T cells via a mechanism of cross-presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号