首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial proteins and peptides produced by bacteria, termed bacteriocins, are widely acknowledged to be important contributors to their producer organism survival. Enterocin A, enterocin B, enterocin P and enterolysin A belong to the best studied enterocins, i.e., bacteriocins produced by enterococci and streptococci. Twenty-one enterococcal and seven streptococcal isolates were analysed for bacteriocin-like activity production and resistance by overlay test. Up to 50% of tested strains showed antibacterial activity at least against one indicator strain. The occurrence of enterocin B structural gene in several isolates was confirmed by PCR method. The results of this study should broaden knowledge of bacteriocin-like activity production and resistance among gram-positive bacteria.  相似文献   

2.
Antimicrobial proteins and peptides produced by bacteria, termed bacteriocins, are widely acknowledged to be important contributors to their producer organism survival. Enterocin A, enterocin B, enterocin P and enterolysin A belong to the best studied enterocins, i.e., bacteriocins produced by enterococci and streptococci. Twenty-one enterococcal and seven streptococcal isolates were analysed for bacteriocin-like activity production and resistance by overlay test. Up to 50% of tested strains showed antibacterial activity at least against one indicator strain. The occurrence of enterocin B structural gene in several isolates was confirmed by PCR method. The results of this study should broaden knowledge of bacteriocin-like activity production and resistance among gram-positive bacteria.  相似文献   

3.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

4.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

5.
Class IIa bacteriocins: biosynthesis, structure and activity   总被引:29,自引:0,他引:29  
In the last decade, a variety of ribosomally synthesized antimicrobial peptides or bacteriocins produced by lactic acid bacteria have been identified and characterized. As a result of these studies, insight has been gained into fundamental aspects of biology and biochemistry such as producer self protection, membrane-protein interactions, and protein modification and secretion. Moreover, it has become evident that these peptides may be developed into useful antimicrobial additives. Class IIa bacteriocins can be considered as the major subgroup of bacteriocins from lactic acid bacteria, not only because of their large number, but also because of their activities and potential applications. They have first attracted particular attention as listericidal compounds and are now believed to be the next in line if more bacteriocins are to be approved in the future. The present review attempts to provide an insight into general knowledge available for class IIa bacteriocins and discusses common features and recent findings concerning these substances.  相似文献   

6.
AIMS: The aim of this study was to isolate and identify bacteriocin-producing lactic acid bacteria (LAB) issued from Mongolian airag (traditional fermented mare's milk), and to purify and characterize bacteriocins produced by these LAB. METHODS AND RESULTS: Identification of the bacteria (Enterococcus durans) was carried out on the basis of its morphological, biochemical characteristics and carbohydrate fermentation profile and by API50CH kit and 16S rDNA analyses. The pH-neutral cell-free supernatant of this bacterium inhibited the growth of several Lactobacillus spp. and food-borne pathogens including Escherichia coli, Staphylococcus aureus and Listeria innocua. The antimicrobial agent (enterocin A5-11) was heat stable and was not sensitive to acid and alkaline conditions (pH 2-10), but was sensitive to several proteolytic enzymes. Its inhibitory activity was completely eliminated after treatment with proteinase K and alpha-chymotrypsin. The activity was however not completely inactivated by other proteases including trypsin and pepsin. Three-step purification procedure with high recovery yields was developed to separate two bacteriocins. The applied procedure allowed the recovery of 16% and 64% of enterocins A5-11A and A5-11B, respectively, present in the culture supernatant with purity higher than 99%. SDS-PAGE analyses revealed that enterocin A5-11 has a molecular mass of 5000 Da and mass spectrometry analyses demonstrates molecular masses of 5206 and 5218 Da for fractions A and B, respectively. Amino acid analyses of both enterocins indicated significant quantitative difference in their contents in threonine, alanine, isoleucine and leucine. Their N-termini were blocked hampering straightforward Edman degradation. CONCLUSIONS: Bacteriocins A5-11A and B from Ent. durans belong to the class II of bacteriocins. SIGNIFICANCE AND IMPACT OF THE STUDY: Judging from molecular masses, amino acid composition and spectrum of activities, bacteriocins A5-11A and B from Ent. durans show high degree of similarity with enterocins L50A and L50B isolated from Enterococcus faecium (Cintas et al. 1998, 2000) and with enterocin I produced by Ent. faecium 6T1a, a strain originally isolated from a Spanish-style green olive fermentation (Floriano et al. 1998).  相似文献   

7.
Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.  相似文献   

8.
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.  相似文献   

9.
Aims:  To isolate bacteriocin-producing lactic acid bacteria (LAB) with high wide spectrum antibacterial activity and to characterize their inhibitory peptides.
Method and Results:  Seven LAB strains [ Lactobacillus casei ssp. rhamnosus (PC5), Lactobacillus delbrueckii ssp. bulgaricus (BB18), Lactococcus lactis ssp. lactis (BCM5, BK15), Enterococcus faecium (MH3), Lactobacillus plantarum (BR12), Lactobacillus casei ssp. casei (BCZ2)], isolated from authentic Bulgarian dairy products were capable of producing bacteriocins, inhibiting the widest range of pathogenic bacteria. The bacteriocins were resistant to heating at 121°C for 15 min, stable at pH 2–10, sensitive to protease, insensitive to α-amylase and lipase. Two of bacteriocins produced by Lact. bulgaricus BB18 (bulgaricin BB18) and E. faecium MH3 (enterocin MH3) were purified and the molecular masses were determined. The N -terminal amino acid sequence of bulgaricin BB18 did not show strong homology to other known bacteriocins.
Conclusions:  Lactobacillus bulgaricus BB18 and E. faecium MH3 produce two novel bacteriocins highly similar to the pediocin-like nonlantibiotics.
Significance and Impact of the Study:  The two bacteriocins are potential antimicrobial agents and, in conjunction with their producers, may have use in applications to contribute a positive effect on the balance of intestinal microflora. Furthermore, bulgaricin BB18 strongly inhibits Helicobacter pylori .  相似文献   

10.
Bacteriocins are antimicrobial peptides or proteins produced by strains of diverse bacterial species. The antimicrobial activity of this group of natural substances against foodborne pathogenic, as well as spoilage bacteria, has raised considerable interest for their application in food preservation. Application of bacteriocins may help reduce the use of chemical preservatives and/or the intensity of heat and other physical treatments, satisfying the demands of consumers for foods that are fresh tasting, ready to eat, and lightly preserved. In recent years, considerable effort has been made to develop food applications for many different bacteriocins and bacteriocinogenic strains. Depending on the raw materials, processing conditions, distribution, and consumption, the different types of foods offer a great variety of scenarios where food poisoning, pathogenic, or spoilage bacteria may proliferate. Therefore, the effectiveness of bacteriocins requires careful testing in the food systems for which they are intended to be applied against the selected target bacteria. This and other issues on application of bacteriocins in foods of dairy, meat, seafood, and vegetable origins are addressed in this review.  相似文献   

11.
环状细菌素研究进展   总被引:1,自引:0,他引:1  
细菌素是一类由细菌核糖体合成的抗菌肽,是产生菌获得生存优势的重要手段。与大多数线性细菌素不同,环状细菌素具有N端和C端共价连接的特殊结构。这种环状结构赋予环状细菌素良好的耐热性、广泛的pH适应性和抗蛋白酶降解能力,在食品防腐和对治耐药性细菌领域表现出巨大的应用潜能。通过对已发现的环状细菌素结构分析发现,相对于一级结构,其三级结构的相似性更高,可以作为环状细菌素归类的依据。环状细菌素的生物合成机制尚不清楚,但其环化机制是最具价值的研究热点,可为其他一些肽类物质的合成提供支架,从而提高应用潜能。环状细菌素抑菌机制主要是在目标菌株的细胞膜上穿孔,使胞内物质外流,进而导致目标细菌死亡。其有类似于抗生素的抑菌活性和有别于抗生素的抑菌机制,为治疗日益严重的耐药性病原菌提供了可靠备选资源。本文综述了环状细菌素的构效关系、生物合成和抑菌机制方面的研究进展,希望能够对环状细菌素的深入研究和应用提供有价值的参考。  相似文献   

12.
Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.  相似文献   

13.
A New Structure-based Classification of Gram-positive Bacteriocins   总被引:1,自引:0,他引:1  
Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins’ classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.  相似文献   

14.
AIMS: To isolate, characterize and identify bacteriocins from lactic acid bacteria in soil. METHODS AND RESULTS: Thirty-four acid-producing bacteria were isolated from 87 soil samples. Antibacterial activities were detected, and one strain, L28-1 produced a bacteriocin that was active against some Gram-positive bacteria. L28-1 was identified as Enterococcus durans by 16S rDNA sequence analysis and API50CHL. This bacteriocin did not lose its activity after autoclaving (121 degrees C for 15 min), but was inactivated by protease K. The bacteriocin was purified by hydrophobic column chromatography, and Sep-Pak C(18). Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the partially purified bacteriocin contained numerous protein bands. Two bands that displayed antibacterial activities were c. 3.4 and 2.5 kDa in size. In this work, the 3.4-kDa bacteriocin was analysed with N-terminal amino acid and DNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. The results indicated that the 3.4-kDa bacteriocin of Ent. durans L28-1 is a new natural enterocin variant. CONCLUSIONS: Enterococcus durans L28-1 produced a new bacteriocin. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports a novel bacteriocin that is produced by Ent. durans that has potential for use as a food preservative.  相似文献   

15.
Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and “healthy” fermented meat products.  相似文献   

16.
Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.  相似文献   

17.
Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.  相似文献   

18.
R Yang  M C Johnson    B Ray 《Applied microbiology》1992,58(10):3355-3359
Antimicrobial peptides, bacteriocins, produced by lactic acid bacteria were adsorbed on the cells of producing strains and other gram-positive bacteria. pH was a crucial factor in determining the degree of adsorption of these peptides onto cell surfaces. In general, between 93 and 100% of the bacteriocin molecules were adsorbed at pHs near 6.0, and the lowest (< or = 5%) adsorption took place at pH 1.5 to 2.0. On the basis of this property, a novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria. By using this method we made preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated. This method produced a higher yield than isolation procedures, which rely on precipitation of the bacteriocins from the cell-free culture liquor. It is simple and can be used to produce large quantities of bacteriocins from lactic acid bacteria to be used as food biopreservatives.  相似文献   

19.
Antimicrobial peptides, bacteriocins, produced by lactic acid bacteria were adsorbed on the cells of producing strains and other gram-positive bacteria. pH was a crucial factor in determining the degree of adsorption of these peptides onto cell surfaces. In general, between 93 and 100% of the bacteriocin molecules were adsorbed at pHs near 6.0, and the lowest (< or = 5%) adsorption took place at pH 1.5 to 2.0. On the basis of this property, a novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria. By using this method we made preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated. This method produced a higher yield than isolation procedures, which rely on precipitation of the bacteriocins from the cell-free culture liquor. It is simple and can be used to produce large quantities of bacteriocins from lactic acid bacteria to be used as food biopreservatives.  相似文献   

20.
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号