首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNAs (miRNAs) are regulatory small non-coding RNAs that can regulate gene expression by binding to gene elements, such as the gene promotor 5'UTR, mainly in the 3'UTR of mRNA. One miRNA targets many mRNAs, which can be regulated by many miRNAs, leading to a complex metabolic network. In our study, we found that the expression level of miR-590-5p is higher in the human hepatocellular carcinoma cell line HepG2 than in the normal hepatocellular cell line L02. Downregulation of miR-590-5p inhibited proliferation and invasion of hepatocellular carcinoma cells (HCCs). We also showed that expression of TGF-beta RII, which has been regarded as a regulator of tumor proliferation, invasion, and migration in hepatocellular carcinoma, is regulated by miRNA-590-5p. In addition, miR-590-5p downregulated the expression of TGF-beta RII by targeting the 3'UTR of mRNA. We also found that downregulation of miR-590-5p was associated with an elevation of TGF-beta RII and inhibition of proliferation and invasion in HepG2 cells. Furthermore, overexpression of miR-590-5p was associated with upregulation of TGF-beta RII and could promote proliferation and invasion in L02 cells. In conclusion, we determined that TGF-beta RII is a novel target of miRNA-590-5p. Thus, the role of TGF-beta RII in regulating proliferation and invasion of human HCCs is controlled by miR-590-5p. In other words, miR-590-5p promotes proliferation and invasion in human HCCs by directly targeting TGF-beta RII.  相似文献   

4.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR-411-3p in bleomycin (BLM)-induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real-time quantitative polymerase chain reaction assess the expression levels of miR-411-3p, collagen (COLI) and transforming growth factor (TGF)-β/Smad ubiquitin regulatory factor (Smurf)-2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR-411-3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR-411-3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson's staining. We found that miR-411-3p expression was decreased in bleomycin (BLM)-induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)-β signalling and collagen production. Overexpression of miR-411-3p inhibited the expression of collagen, F-actin and the TGF-β/Smad signalling pathway factors in BLM-induced skin fibrosis and fibroblasts. In addition, miR-411-3p inhibited the target Smad ubiquitin regulatory factor (Smurf)-2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF-β/Smad signalling pathway. We demonstrated that miR-411-3p exerts antifibrotic effects by inhibiting the TGF-β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

5.
6.
7.
Cartilage formation during both embryonic development and bone repairing processes involves mesenchymal stem cells (MSCs) differentiation. Wnt/β-catenin signaling pathway inhibits early chondrogenesis and is down-regulated during Transforming growth factor-β1 (TGF-β1)-induced chondrogenesis. However, the regulatory molecules that participate in the process is unknown. This study was designed to investigate the underlying mechanisms that down-regulate Wnt/β-catenin pathway during chondrogenesis. TGF-β1-induced micromass cultures of C3H10T1/2 were used as chondrocyte differentiation model. Gene expression profile was detected by realtime-PCR. Regulatory role of HDAC1 on β-catenin was investigated by luciferase assay, chromatin immunoprecipitation (ChIP) assay, co-immunoprecipitation (Co-IP) assay and in vitro ubiquitination assay. In this study, we showed that HDAC1 was induced and suppressed β-catenin gene expression through direct binding to its promoter. Besides, HDAC1 could also interact with deacetylate β-catenin protein through its deacetylase domain, which causes degradation of β-catenin. Our results indicate that HDAC1 plays an important role in chondrogenesis and may represent a therapeutic target for modulation of cartilage development.  相似文献   

8.
Atrial fibrosis is a crucial mechanism responsible for atrial fibrillation (AF).Sex-determining region Y-box containing gene 9 (Sox9) plays a pivotal role in fi...  相似文献   

9.
TGF-β signaling plays a principal role in renal fibrosis, but the precise mechanisms and the downstream factors are still largely unknown. Sox9 exhibits diverse roles in regulating the production of extracellular matrix proteins. Here we found that Sox9 was induced by TGF-β in the kidney fibroblast and acted as an important downstream mediator of TGF-β signaling in promoting renal fibrosis. TGF-β/Smad signaling mediated the upregulation of Sox9 in kidney fibroblast by binding to a conserved enhancer. In different mouse models of renal fibrosis, as well as in the kidney biopsy tissue from patients with renal fibrosis, Sox9 expression significantly increased. Immunostaining confirmed the upregulation of Sox9 in the kidney fibroblast during renal fibrosis. Delivery of Sox9 knockdown plasmid to the kidney by ultrasound microbubble–mediated gene transfer suppressed the unilateral ureteral obstruction (UUO) or folic acid-induced mouse renal fibrosis, whereas ectopic expression of Sox9 aggravated renal fibrosis. In addition, we identified Sox9 as a direct target of miR-30. Notably, miR-30 expression was significantly inhibited by TGF-β1 in the kidney fibroblast and the downregulation of miR-30 was observed in renal fibrosis. Mechanistically, inhibition of miR-30 independently strengthened the effect of TGF-β/Smad signaling on Sox9 upregulation. Adenovirus-mediated ectopic expression of miR-30 in kidney fibroblast greatly reduced UUO-induced renal fibrosis by targeting Sox9. These findings link Sox9 to intrinsic mechanisms of TGF-β signaling in renal fibrosis and may have therapeutic potential for tissue fibrosis.  相似文献   

10.
MicroRNAs (miRNAs) are a novel class of powerful, endogenous regulators of gene expression. This study identified 16 differentially expressed miRNAs in ischemic myocardium of rats using TaqMan Low Density Array. In addition, bioinformatics analyses, such as Gene ontology and Pathway assays, were applied to determine the apoptosis pathway, only regulated by miR-384-5p, and all the associated target genes (PIK3CD, PPP3CA, PPP3CB, PPP3R1, CASP3 and IL1A). These target genes, besides PIK3CB, were shown to be significantly up-regulated by qRT-PCR assay, which further suggested that PIK3CD, PPP3CA, PPP3R1, CASP3, IL1A could be regulated by miR-384-5p. MTT, Western blot, qRT-PCR and luciferase assays were used to investigate the role of miR-384-5p in myocardial ischemia. We found that cleaved caspase3 expression was up-regulated by miR-384-5p and down-regulated by miR-384-5p inhibitor suggesting that apoptosis pathway was regulated by miR-384-5p. We also found that miR-384-5p suppressed cell viability while miR-384-5p inhibitor improved it, confirming H9c2 cell survival was affected by miR-384-5p. In addition, the PIK3CD protein level in H9c2 cells was up-regulated by miR-384-5p inhibitor. We found that miR-384-5p expression level decreased and PIK3CD protein level increased in both ischemic myocardium of rats and hypoxic H9c2 cells, and that miR-384-5p suppress PIK3CD expression through a miR-384-5p binding site within the 3′ untranslational region of PIK3CD. These results show that miR-384-5p, an important protecting factor, plays a significant role in cardioprotection by regulating PIK3CD in myocardial ischemia.  相似文献   

11.
Transforming growth factor (TGF)-β is a pro-oncogenic cytokine that induces the epithelial–mesenchymal transition (EMT), a crucial event in tumor progression. During TGF-β-mediated EMT in NMuMG mouse mammary epithelial cells, we observed sustained increases in reactive oxygen species (ROS) levels in the cytoplasm and mitochondria with a concomitant decrease in mitochondrial membrane potential and intracellular glutathione levels. In pseudo ρ0 cells, whose respiratory chain function was impaired, the increase in intracellular ROS levels was abrogated, suggesting an important role of mitochondrial activity as a trigger for TGF-β-stimulated ROS generation. In line with this, TGF-β-mediated expression of the EMT marker fibronectin was inhibited not only by chemicals that interfere with ROS signaling but also by exogenously expressed mitochondrial thioredoxin (TXN2) independent of Smad signaling. Of note, TGF-β-mediated induction of HMGA2, a central mediator of EMT and metastatic progression, was similarly impaired by TXN2 expression, revealing a novel mechanism involving a thiol oxidation reaction in mitochondria, which regulates TGF-β-mediated gene expression associated with EMT.  相似文献   

12.
Increasing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNAs, participate in almost every step of cellular processes. MiRNAs are aberrantly expressed in human cancers and contribute to cancer development and progression. Study of miRNAs may provide a new clue for understanding the mechanism of carcinogenesis and a new tool for cancer treatment. In the present study, miR-153 was downregulated in human osteosarcoma tissues and cell lines. Introduction of miR-153 mimics into the MG-63 cells inhibited cell proliferation and invasion. Our results further revealed that transforming growth factor beta 2 (TGF-β2) was negatively regulated by miR-153. Furthermore, overexpression of miR-153 decreased p-SMAD2, p-SMAD3, epidermal growth factor receptor (EGFR) and insulin-like growth factor binding protein-3 (IGFBP-3) expressions, which were the downstream signaling molecules of TGF-β. Furthermore, miRNA-153 suppressed TGF-β-mediated MG-63 proliferation and migration. Therefore, our results suggest that miR-153 may act as a tumor suppressor in osteosarcoma through targeting TGF-β2.  相似文献   

13.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.  相似文献   

14.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function a  相似文献   

15.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities.Adam22 is highly expressed in human brain. Theadam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved byin vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.  相似文献   

16.
17.
18.
Oral squamous cell carcinoma (OSCC) is a malignant neoplasm with high mortality and morbidity. The role of circRNA and its molecular mechanism in OSCC remains largely unknown. The study aims to explore the role of a novel circular RNA (circLDLRAD3) in OSCC and its underlying mechanism. PCR and fluorescence in situ hybridization were used to explore the expression features of circLDLRAD3 in OSCC. The effects of circLDLRAD3 on the behaviour of OSCC were investigated using CCK-8, colony formation assay, transwell and animal experiments. Bioinformatics analysis along with dual luciferase reporter assay and RIP assay were used to reveal the interaction between circLDLRAD3, miR-558 and Smad4. It was revealed that circLDLRAD3 exhibited low expression status in OSCC. CircLDLRAD3 inhibits proliferation, migration, and invasion of OSCC cells both in vitro and in vivo. Mechanistically, circLDLRAD3 could bind with miR-558 to positively regulate its target gene Smad4 expression. Rescue experiments further confirmed both miR-558 overexpression and Smad4 knockdown could reverse the influence of circLDLRAD3 on OSCC phenotypes. Moreover, circLDLRAD3 regulate the TGF-β signalling pathways to influence EMT through miR-558/Smad4 axis. Our study found that circLDLRAD3 is downregulated in OSCC and verified its tumour suppressor function and mechanism in OSCC through sponging miR-558 to regulate miR-558/Smad4/TGF-β axis. The characterization of such regulating network uncovers an important mechanism underlying OSCC progression, which could provide promising targets targeted therapy strategies for OSCC in the future.  相似文献   

19.
The purpose of this study was to investigate the role of Poly (C)-binding protein 2 (PCBP2) and the related signaling pathway in glioma progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were performed to measure PCBP2 messenger RNA and protein expression in glioma tissues or cells. Cell transfection was completed using Lipofectamine 2000. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry assay were used to explore the effects of PCBP2 expression on biological behaviors of glioma cells. Western blot assay was used for the detection of pathway related proteins. Expression of PCBP2 in glioma tissues and cells were higher than that in paracancerous tissues and normal cells (both p < .01). Moreover, the elevated expression of PCBP2 was significantly correlated with tumor size (p = .001) and WHO stage (p = .010). Knockdown of PCBP2 could suppress proliferation, migration and invasion of glioma cells and promote apoptosis. Besides, the expression of transforming growth factor-β (TGF-β) pathway related proteins TGF-β1, p-Smad2 and p-Smad7 were decreased following the downregulation of PCBP2. PCBP2 also inhibited FHL3 expression by binding to FHL3-3′UTR. The inhibition of FHL3 could reverse the antitumor action caused by PCBP2 silencing. In vivo assay, PCBP2 was also found to inhibit the tumor growth of glioma. PCBP2 activates TGF-β/Smad signaling pathway by inhibiting FHL3 expression, thus promoting the development and progression of glioma.  相似文献   

20.
Transforming growth factor-β (TGF-β) plays a pivotal role in the fibrogenic action involved in the induction of connective tissue growth factor (CTGF), extracellular matrix and fibroblast transformation. Smad3 mediates TGF-β signaling related to the fibrotic response. In human lung fibroblasts or bronchial smooth muscle cells, we demonstrated that an increase in the intracellular glutathione level suppressed TGF-β1-induced phosphorylation of Smad3, while inhibiting TGF-β1-induced expressions of CTGF, collagen type1, fibronectin and transformation into myofibroblasts, which are characterized by the expression of α-smooth muscle actin. These data indicate that the intracellular glutathione redox status regulates TGF-β-induced fibrogenic effects through Smad3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号