首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initiation is the rate-limiting step during mRNA 5′ cap-dependent translation, and thus a target of a strict control in the eukaryotic cell. It is shown here by analytical ultracentrifugation and fluorescence spectroscopy that the affinity of the human translation inhibitor, eIF4E-binding protein (4E-BP1), to the translation initiation factor 4E is significantly higher when eIF4E is bound to the cap. The 4E-BP1 binding stabilizes the active eIF4E conformation and, on the other hand, can facilitate dissociation of eIF4E from the cap. These findings reveal the particular allosteric effects forming a thermodynamic cycle for the cooperative regulation of the translation initiation inhibition.  相似文献   

2.
To investigate the binding preference of eIF4E for the three eIF4E-binding isoforms (4E-BP1-3) and the function of N-terminal flexible region of eIF4E for their interactions, the binding parameters of recombinant full-length and N-terminal residues-deleted eIF4Es with 4E-BP1-3 were investigated by the surface plasmon resonance (SPR) analysis. Consequently, it was clarified that 4E-BP2 exhibits the highest binding affinity for both m7GTP-bound and -unbound full-length eIF4Es when compared with 4E-BP1 and 4E-BP3. This is primarily due to the difference among their dissociation rates, because their association rates are almost the same. Interestingly, the deletion of the 33 N-terminal residues of eIF4E increased its binding affinities for 4E-BP1 and 4E-BP2 markedly, whereas such a change was not observed by at least the N-terminal deletion up to 26 residues. In contrast, the binding parameters of 4E-BP3 were hardly influenced by N-terminal deletion up to 33 residues. From the comparison of the amino acid sequences of 4E-BP1-3, the present result indicates the importance of N-terminal flexible region of eIF4E for the suppressive binding with 4E-BP1 and 2, together with the possible contribution of N-terminal sequence of 4E-BP isoform to the regulative binding to eIF4E.  相似文献   

3.
The eukaryotic translation initiation factor eIF4E is dysregulated in many cancers. eIF4E, through its mRNA export and translation functions, combinatorially modulates the expression of genes involved in Akt dependent survival signaling. For these activities, eIF4E must bind the 7-methyl guanosine (m7G) cap moiety on the 5′-end of mRNAs. We demonstrate that a physical mimic of the m7G cap, ribavirin, inhibits eIF4E dependent Akt survival signaling. Specifically, ribavirin impairs eIF4E mediated Akt activation via inhibiting the production of an upstream activator of Akt, NBS1. Consequently, ribavirin impairs eIF4E dependent apoptotic rescue. A ribavirin analog with distinct physico-chemical properties, tiazofurin, does not impair eIF4E activity indicating that only analogs that mimic the m7G cap will inhibit eIF4E function. Ribavirin represents a first-in-class strategy to inhibit eIF4E dependent cancers, through competition for m7G cap binding. Thus, ribavirin coordinately impairs eIF4E dependent pathways and thereby, potently inhibits its biological effects.  相似文献   

4.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

5.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   

6.
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5′-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.  相似文献   

7.
Structural complexes of the eukaryotic translation initiation factor 4E (eIF4E) with a series of N(7)-alkylated guanosine derivative mRNA cap analogue structures have been characterised. Mass spectrometry was used to determine apparent gas-phase equilibrium dissociation constants (K(d)) values of 0.15 microM, 13.6 microM, and 55.7 microM for eIF4E with 7-methyl-GTP (m(7)GTP), GTP, and GMP, respectively. For tight and specific binding to the eIF4E mononucleotide binding site, there seems to be a clear requirement for guanosine derivatives to possess both the delocalised positive charge of the N(7)-methylated guanine system and at least one phosphate group. We show that the N(7)-benzylated monophosphates 7-benzyl-GMP (Bn(7)GMP) and 7-(p-fluorobenzyl)-GMP (FBn(7)GMP) bind eIF4E substantially more tightly than non-N(7)-alkylated guanosine derivatives (K(d) values of 7.0 microM and 2.0 microM, respectively). The eIF4E complex crystal structures with Bn(7)GMP and FBn(7)GMP show that additional favourable contacts of the benzyl groups with eIF4E contribute binding energy that compensates for loss of the beta and gamma-phosphates. The N(7)-benzyl groups pack into a hydrophobic pocket behind the two tryptophan side-chains that are involved in the cation-pi stacking interaction between the cap and the eIF4E mononucleotide binding site. This pocket is formed by an induced fit in which one of the tryptophan residues involved in cap binding flips through 180 degrees relative to structures with N(7)-methylated cap derivatives. This and other observations made here will be useful in the design of new families of eIF4E inhibitors, which may have potential therapeutic applications in cancer.  相似文献   

8.
In this study, we document that the overall rate of protein synthesis decreases during in vitro maturation (IVM) of pig oocytes despite enhanced formation of the 5' cap structure eIF4F. Within somatic/interphase cells, formation of the eIF4F protein complex correlates very well with overall rates of protein translation, and the formation of this complex is controlled primarily by the availability of the 5' cap binding protein eIF4E. We show that the eIF4E inhibitory protein, 4E-BP1, becomes phosphorylated during IVM, which results in gradual release of eIF4E from 4E-BP1, as documented by immunoprecipitation analyses. Isoelectric focusing and Western blotting experiments show conclusively that eIF4E becomes gradually phosphorylated with a maximum at metaphase II (M II). The activity of eIF4E and its ability to bind mRNA also increases during oocyte maturation as documented in experiments with m7-methyl GTP-Sepharose, which mimics the cap structure of mRNA. Complementary analysis of flow-through fraction for 4E-BP1, and eIF4G proteins additionally provides evidence for enhanced formation of cap-binding protein complex eIF4F. Altogether, our results bring new insights to the regulation of translation initiation during meiotic division, and more specifically clarify that 4E-BP1 hyper-phosphorylation is not the cause of the observed suppression of overall translation rates.  相似文献   

9.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

10.
The mRNA cap-binding protein eIF4E is the limiting factor in the eIF4F translation initiation complex, which mediates the binding of the 40S ribosome to the mRNA. 15N relaxation studies have been used to characterize the backbone dynamics of deuterated eIF4E in a CHAPS micelle for the apoprotein, the m7GDP-bound form, and the dinucleotide (m7GpppA)-bound form, as well as for CHAPS-free eIF4E. Large differences in overall correlation time between the CHAPS-free form (11.8 ns) and samples containing different concentrations of CHAPS (15.9–19.4 ns) indicate that eIF4E is embedded in a large micelle in the presence of CHAPS, with a total molecular weight in the range of 40–60 kDa. CHAPS seems to restrict the mobility of the a2–b3 and a4–b5 loops which are thought to be embedded in the micelle. No significant changes in overall mobility were seen between the m7GDP-bound form, the m7GpppA-bound form, and the apoprotein. Amide hydrogen exchange data indicate the presence of slowly exchanging amides in two surface-exposed helices (a2 and a4), as well as the a4–b5 loop, indicating protection by the CHAPS micelle. The micelle covers the convex side of the protein away from the cap-binding site.  相似文献   

11.
In eukaryotes, a rate-limiting step of translation initiation is recognition of the mRNA 5′ m7GpppN cap structure by the eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex consisting of the cap-binding protein, eIF4E, along with eIF4G, and eIF4A. The eIF4E-binding proteins (4E-BPs) repress translation by disrupting eIF4F formation, thereby preventing ribosome recruitment to the mRNA. Of the three 4E-BPs, 4E-BP2 is the predominant paralog expressed in the mammalian brain and plays an important role in synaptic plasticity and learning and memory. 4E-BP2 undergoes asparagine deamidation, solely in the brain, during early postnatal development. Deamidation spontaneously converts asparagines into a mixture of aspartates or isoaspartates, the latter of which may be destabilizing to proteins. The enzyme protein l-isoaspartyl methyltransferase (PIMT) prevents isoaspartate accumulation by catalyzing the conversion of isoaspartates to aspartates. PIMT exhibits high activity in the brain, relative to other tissues. We report here that 4E-BP2 is a substrate for PIMT. In vitro deamidated 4E-BP2 accrues isoapartyl residues and is methylated by recombinant PIMT. Using an antibody that recognizes 4E-BP2, which harbors isoaspartates at the deamidation sites, Asn99 and Asn102, we demonstrate that 4E-BP2 in PIMT−/− brain lysates contains isoaspartate residues. Further, we show that 4E-BP2 containing isoaspartates lacks the augmented association with raptor that is a feature of deamidated 4E-BP2.  相似文献   

12.
The structural features of human eIF4E were investigated by X-ray crystal analyses of its cap analog (m(7)GTP and m(7)GpppA) complexes and molecular dynamics (MD) simulations of cap-free and cap-bound eIF4Es, as well as the cap-bound Ser209-phosphorylated eIF4E. Crystal structure analyses at 2.0 A resolution revealed that the molecule forms a temple-bell-shaped surface of eight antiparallel beta-structures, three alpha-helices and ten loop structures, where the N-terminal region corresponds to the handle of the bell. This concave backbone provides a scaffold for the mRNA cap-recognition pocket consisting of three receiving parts for the 5'-terminal m(7)G base, the triphosphate, and the second nucleotide. The m(7)G base is sandwiched between the two aromatic side-chains of Trp102 and Trp56. The two (m(7)G)NH-O (Glu103 carboxy group) hydrogen bonds stabilize the stacking interaction. The basic residues of Arg157 and Lys162 and water molecules construct a binding pocket for the triphosphate moiety, where a universal hydrogen-bonding network is formed. The flexible C-terminal loop region unobserved in the m(7)GTP complex was clearly observed in the m(7)GpppA complex, as a result of the fixation of this loop by the interaction with the adenosine moiety, indicating the function of this loop as a receiving pocket for the second nucleotide. On the other hand, MD simulation in an aqueous solution system revealed that the cap-binding pocket, especially its C-terminal loop structure, is flexible in the cap-free eIF4E, and the entrance of the cap-binding pocket becomes narrow, although the depth is relatively unchanged. SDS-PAGE analyses showed that this structural instability is highly related to the fast degradation of cap-free eIF4E, compared with cap-bound or 4E-BP/cap-bound eIF4E, indicating the conferment of structural stability of eIF4E by the binary or ternary complex formation. MD simulation of m(7)GpppA-bound Ser209-phosphorylated eIF4E showed that the size of the cap-binding entrance is dependent on the ionization state in the Ser209 phosphorylation, which is associated with the regulatory function through the switching on/off of eIF4E phosphorylation.  相似文献   

13.
The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5′-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5′-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357–1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m7GTP-Sepharose reveals that both CGP and eIF4G(1357–1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5′-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F.  相似文献   

14.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

15.
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.  相似文献   

16.
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.  相似文献   

17.
18.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

19.
The eukaryotic translational initiation factor 4G (eIF4G) interacts with the cap-binding protein eIF4E through a consensus binding motif, Y(X)4LΦ (where X is any amino acid and Φ is a hydrophobic residue). 4E binding proteins (4E-BPs), which also contain a Y(X)4LΦ motif, regulate the eIF4E/eIF4G interaction. The non- or minimally-phosphorylated form of 4E-BP1 binds eIF4E, preventing eIF4E from interacting with eIF4G, thus inhibiting translation initiation. 4EGI-1, a small molecule inhibitor of the eIF4E/eIF4G interaction that is under investigation as a novel anti-cancer drug, has a dual activity; it disrupts the eIF4E/eIF4G interaction and stabilizes the binding of 4E-BP1 to eIF4E. Here, we report the complete backbone NMR resonance assignment of an unliganded 4E-BP1 fragment (4E-BP144–87). We also report the near complete backbone assignment of the same fragment in complex to eIF4E/m7GTP (excluding the assignment of the last C-terminus residue, D87). The chemical shift data constitute a prerequisite to understanding the mechanism of action of translation initiation inhibitors, including 4EGI-1, that modulate the eIF4E/4E-BP1 interaction.  相似文献   

20.
IGF-I acutely stimulates protein synthesis in cardiac muscle through acceleration of mRNA translation. In the present study, we examined the regulatory signaling pathways and translation protein factors that potentially contribute to the myocardial responsiveness of protein synthesis to IGF-I in vivo. IGF-I was injected IV into rats and 20 min later the hearts were excised and homogenized for assay of regulatory proteins. IGF-I increased assembly of the translationally active eukaryotic initiation factor (eIF)4GeIF4E complex. The increased assembly of eIF4GeIF4E was associated with an enhanced eIF4G phosphorylation and increased availability of eIF4E. Increased availability of eIF4E occurred as a consequence of diminished abundance of the inactive 4E-BP1eIF4E complex following IGF-I. The assembly of the 4E-BP1eIF4E complex appeared to be decreased through an IGF-I-induced phosphorylation of 4E-BP1. IGF-I also caused an increase in the phosphorylation of S6K1. Activation of the potential upstream regulators of 4E-BP1 and S6K1 phosphorylation via PKB and mTOR was also observed. In contrast, there was no effect of IGF-I on phosphorylation of elongation factor (eFE)2. The results suggest the major impact of IGF-I in cardiac muscle occurred via stimulation of translation initiation rather than elongation. Furthermore, the results are consistent with a role for assembly of active eIF4GeIF4E complex and activation of S6K1 in mediating the stimulation of mRNA translation initiation by IGF-I through a PKB/mTOR signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号