首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes alpha-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

2.
The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03.  相似文献   

3.
Thermus thermophilus and Thermus aquaticus are thermophilic bacteria that are frequently found to attach to solid surfaces in hot springs to form biofilms. Uridine diphosphate (UDP)-galactose-4′-epimerase (GalE) is an enzyme that catalyzes the conversion of UDP-galactose to UDP-glucose, an important biochemical step in exopolysaccharide synthesis. We expressed GalE obtained from T. thermophilus HB8 in Escherichia coli and found that the enzyme is stable at 80 °C and can epimerize UDP-galactose to UDP-glucose and UDP-N-acetylgalactosamine (UDP-GalNAc) to UDP-N-acetylglucosamine (UDP-GlcNAc). Enzyme overexpression in T. thermophilus HB27 led to an increased capacity of biofilm production. Therefore, the galE gene is important to biofilm formation because of its involvement in epimerizing UDP-galactose and UDP-N-acetylgalactosamine for exopolysaccharide biosynthesis.  相似文献   

4.
A rapid, simple, and inexpensive method has been developed for preparing UDP-N-acetylgalactosamine in amounts sufficient for several thousand assays of enzymes that employ this nucleotide sugar as substrate. The UDP-N-acetylglucosamine-4-epimerase in extracts of porcine submaxillary glands was used to convert UDP-N-acetylglucosamine to an equilibrium mixture of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine (molar ratio, 77:23). The two nucleotide sugars were separated from components in the extract by ion-exchange chromatography and then separated from one another by affinity chromatography on a column of Griffonia simplicifolia lectin I bound to agarose. The UDP-N-acetylgalactosamine was obtained in pure form by ion-exchange chromatography in an overall yield of 91% from the equilibrium mixture. The separation of the two nucleotide sugars by affinity chromatography also provides a rapid assay for the UDPGlcNAc-4-epimerase, which is more accurate and less time consuming than earlier published assays.  相似文献   

5.
Neoplastic mast cells of mice (including long-established and newly derived lines) were grown in large-volume suspension cultures to provide enough cells for preparation of microsomal fractions. Microsomal preparations from P815Y and P815S cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine. No significant amount of 14C-labelled glycosaminoglycan was formed when UDP-N-acetylglucosamine was substituted for the UDP-N-acetylgalactosamine. Microsomal preparations from X163 cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and either UDP-N-acetylgalactosamine or UDP-N-acetylglucosamine. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylgalactosamine was degradable by testicular hyaluronidase, indicating that it was chondroitin-like. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylglucosamine was not degradable by testicular hyaluronidase. Microsomal preparations from P815S cells were tested for sulphating activity by incubation with adenosine 3′-phosphate 5′-sulphatophosphate, as well as UDP-[14C]glucuronic acid, and UDP-N-acetylgalactosamine. The resulting newly synthesized polysaccharide was shown by chondroitinase ABC digestion to be 70% chondroitin 4-sulphate and 30% chondroitin. The molecular size of this newly synthesized glycosaminoglycan was determined by gel filtration to be larger than 40000 mol.wt. In general, the glycosaminoglycan-synthesizing ability of the microsomal preparations appeared to reflect glycosaminoglycan synthesis by the intact cells.  相似文献   

6.
The metabolism of d-galactosamine and N-acetyl-d-galactosamine in rat liver   总被引:3,自引:3,他引:0  
d-[1-14C]Galactosamine appears to be utilized mainly by the pathway of galactose metabolism in rat liver, as evidenced by the products isolated from the acid-soluble fraction of perfused rat liver. These products were eluted in the following order from a Dowex 1 (formate form) column and were characterized as galactosamine 1-phosphate, sialic acid, UDP-glucosamine, UDP-galactosamine, N-acetylgalactosamine 1-phosphate, N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and an unidentified galactosamine-containing compound. In addition, [1-14C]glucosamine was found in the glycogen, an incorporation previously shown to result from the substitution of UDP-glucosamine for UDP-glucose in the glycogen synthetase reaction. Analysis of the [1-14C]glucosamine-containing disaccharides released from glycogen by β-amylase provided additional evidence that they consist of a mixture of glucose and glucosamine in a 1:1 ratio, but with glucose predominating on the reducing end. UDP-N-acetylgalactosamine was shown to result from the reaction of UTP with N-acetylgalactosamine 1-phosphate in the presence of a rat liver extract.  相似文献   

7.
To study the influence of phosphoglucomutase (PGM) activity on exopolysaccharide (EPS) synthesis in glucose- and lactose-growing Streptococcus thermophilus, a knockout PGM mutant and a strain with elevated PGM activity were constructed. The pgmA gene, encoding PGM in S. thermophilus LY03, was identified and cloned. The gene was functional in Escherichia coli and was shown to be expressed from its own promoter. The pgmA-deficient mutant was unable to grow on glucose, while the mutation did not affect growth on lactose. Overexpression of pgmA had no significant effect on EPS production in glucose-growing cells. Neither deletion nor overexpression of pgmA changed the growth or EPS production on lactose. Thus, the EPS precursors in lactose-utilizing S. thermophilus are most probably formed from the galactose moiety of lactose via the Leloir pathway, which circumvents the need for a functional PGM.  相似文献   

8.
The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of alpha-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03.  相似文献   

9.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

10.
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved ‘transient keto intermediate’ mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.  相似文献   

11.
It is possible that the low levels of production of exopolysaccharides (EPSs) by lactic acid bacteria could be improved by altering the levels of enzymes in the central metabolism that influence the production of precursor nucleotide sugars. To test this hypothesis, we identified and cloned the galU gene, which codes for UDP glucose pyrophosphorylase (GalU) in Streptococcus thermophilus LY03. Homologous overexpression of the gene led to a 10-fold increase in GalU activity but did not have any effect on the EPS yield when lactose was the carbon source. However, when galU was overexpressed in combination with pgmA, which encodes phosphoglucomutase (PGM), the EPS yield increased from 0.17 to 0.31 g/mol of carbon from lactose. A galactose-fermenting LY03 mutant (Gal+) with increased activities of the Leloir enzymes was also found to have a higher EPS yield (0.24 g/mol of carbon) than the parent strain. The EPS yield was further improved to 0.27 g/mol of carbon by overexpressing galU in this strain. However, the highest EPS yield, 0.36 g/mol of carbon, was obtained when pgmA was knocked out in the Gal+ strain. Measurements of the levels of intracellular metabolites in the cultures revealed that the Gal+ strains had considerably higher glucose 1-phosphate levels than the other strains, and the strain lacking PGM activity had threefold-higher levels of glucose 1-phosphate than the other Gal+ strains. These results show that it is possible to increase EPS production by altering the levels of enzymes in the central carbohydrate metabolism.  相似文献   

12.
1. The tissue contents of hexose monophosphate, N-acetylglucosamine 6-phosphate, UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and UDP-glucuronic acid were determined in the skin of young rats less than 1 day post partum. Tissue-space determinations were used to calculate their average cellular concentrations. 2. The incorporation of [U-14C]-glucose into the intermediates was recorded with time and their rates of turnover were calculated. The results demonstrated product–precursor relationships along the pathway of hexosamine synthesis and that of hexuronic acid synthesis. The rates of synthesis of UDP-N-acetylhexosamine and UDP-glucuronic acid were 1·5±0·3 and 0·24±0·03mμmoles/min./g. of tissue respectively. These results indicated the average turnover time of the total tissue glycosaminoglycans to be about 5 days.  相似文献   

13.
The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation.  相似文献   

14.
Sialic acids are essential components of membrane glycoconjugates. They are responsible for the interaction, structure, and functionality of all deuterostome cells and have major functions in cellular processes in health and diseases. The key enzyme of the biosynthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc) followed by its phosphorylation to ManNAc 6-phosphate and has a direct impact on the sialylation of cell surface components. Here, we present the crystal structures of the human N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase in complexes with ManNAc at 1.64 Å resolution, MNK·ManNAc·ADP (1.82 Å) and MNK·ManNAc 6-phosphate·ADP (2.10 Å). Our findings offer detailed insights in the active center of MNK and serve as a structural basis to design inhibitors. We synthesized a novel inhibitor, 6-O-acetyl-ManNAc, which is more potent than those previously tested. Specific inhibitors of sialic acid biosynthesis may serve to further study biological functions of sialic acid.  相似文献   

15.
A new metabolite, namely 2-acetamidoglucal, has been found in the urine of a patient with sialuria in addition to the metabolites N-acetylneuraminic acid, N-acetylmannosamine, N-acetylglucosamine and N-deoxy-2,3-dehydro-Nacetylneuraminic acid reported earlier. The structure has been identified by mass spectrometry and 360 MHz proton nuclear magnetic resonance spectroscopy and verified by synthesis. All accumulated compounds fit into the metabolic pathway for the biosynthesis of CMP-N-acetylneuraminic acid. Sialuria is discussed in terms of a failure of regulation of UDP-N-acetyl-glucosamine 2-epimerase.  相似文献   

16.
The carbohydrate compositions of the two affinity-chromatography-resolved isozymes of rabbit plasminogen and plasmin as well as the isoelectric-focusing-resolved subforms of each plasminogen isozyme have been investigated in detail. The first plasminogen isozyme as well as its subforms all possess four to five residues of N-acetylglucosamine, two residues of N-acetylgalactosamine, three residues of mannose and five residues of galactose per molecule of protein. Additionally, we previously reported three residues of sialic acid present on this protein molecule. The corresponding plasmin heavy chain for this isozyme contains essentially all of the carbohydrate, and the plasmin light chain appears devoid of carbohydrate. On the other hand, the second plasminogen isozyme as well as its subforms all possess only trace amounts of N-acetylglucosamine, two residues of N-acetylgalactosamine, less than one residue of mannose and three residues of galactose per molecule of protein. In addition, we have previously reported two residues of sialic acid for this molecule. Here, also, all carbohydrate appears on the heavy chain of the plasmin, which is prepared by activation of this particular plasminogen. Thus, the carbohydrate differences which we reported earlier in rabbit plasminogen isozymes are confirmed and extended.  相似文献   

17.
The isolation and partial characterization of a glycoprotein isolated from individual gastric aspirates and extracts of gastric mucosae solubilized with N-acetylcysteine is described.The isolated glycoproteins and the glycoproteins from proteolysed gastric aspirates showed virtually the same carbohydrate and amino acid composition. The results indicate that they consist of a protein core to which are attached carbohydrate side-chains composed of four sugars: N-acetylgalactosamine N-acetylglucosamine, galactose, fucose showing a ratio of 1 : 3 : 4 : 2. Superimposed on this basic structure were additional sugar residues, the blood-group determinants. The results also suggest that the carbohydrate side-chains are linked by an alkali-labile O-glycosidic linkage to the threonine and serine residues of the protein core, N-acetylgalactosamine forming the link.  相似文献   

18.
A soluble fraction of rat liver converts glucosamine and N-acetylglucosamine in the presence of ATP and UTP to N-acetylneuraminic acid. This system, when supplemented with CTP, forms CMP-N-acetylneuraminic acid in high yield. Nicotinamide was found to enhance the synthesis of UDP-N-acetylglucosamine and N-acetylneuraminic acid. Kinetic analysis reveals N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, N-acetylmannosamine, N-acetylmannosamine 6-phosphate and N-acetylneuraminic acid 9-phosphate as intermediates. Under certain experimental conditions, however, an epimerisation of N-acetylglucosamine to N-acetylmannosamine was seen.  相似文献   

19.
By employing a bovine UDP-N-acetylgalactosamine: polypeptideN-acetylgalactosaminyl transferase (O-GalNAc transferase) cDNA as a probe, we isolated four overlapping cDNAs from a porcine lung cDNA library. Both the nucleotide sequence of the porcine cDNA and the predicted primary structure of the protein (559 amino acids) proved to be very similar to those of the bovine enzyme (95% and 99% identity, respectively). Transient expression of the clone in COS-7 cells, followed by enzymatic activity assays, demonstrated that this cDNA sequence encodes a porcine O-GalNAc transferase. The intracellular O-GalNAc transferase activity was increased approximately 100-fold by transfecting cells with the porcine cDNA.Abbreviations O-GalNAc transferase UDP-N-acetylgalactosamine: polypeptideN-acetylgalactosaminyltransferase - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - GnT-III UDP-N-acetylglucosamine: -mannoside -1,4N-acetylglucosaminyltransferase III  相似文献   

20.
Chitin synthetase from Neurospora crassa was inhibited in vitro by tunicamycin. The drug was found to be kinetically a linear competitive inhibitor (Ki ~ 480 μm) with respect to the substrate, UDP-N-acetylglucosamine. Since tunicamycin and UDP-N-acetylglucosamine are structurally similar and there exists linear competitive inhibition, it is likely that tunicamycin inhibits enzyme activity by directly competing with the substrate for access to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号