首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Glucose 6-phosphate dehydrogenase from Eimeria stiedai does not reduce NAD or any of its analogs tested. It does reduce NADP and its thionicotinamide and 3-acetylpyridine analogs. 2. It will accept D-glucose as substrate, but not 2-deoxy-D-glucose, glucose 1-phosphate, or 2-deoxy-D-glucose 6-phosphate. 3. Its response to a number of compounds that activate or inhibit the enzyme from other organisms has been determined. 4. The molecular weight is ca. 240,000 by gel chromatography, and only one isoenzyme could be detected by disc electrophoresis. 5. The enzyme resists conditions that commonly cause dissociation to lighter weight active forms.  相似文献   

2.
Late during sporulation, Bacillus subtilis produces glucose dehydrogenase (GlcDH; EC 1.1.1.47), which can react with D-glucose or 2-deoxy-D-glucose and can use nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor. This enzyme is found mainly in the forespore compartment and is present in spores; it is probably made exclusively in the forespore. The properties of GlcDH were determined both in crude cell extracts and after purification. The enzyme is stable at pH 6.5 but labile at pH 8 or higher; the pH optimum of enzyme activity is 8. After inactivation at pH 8, the activity can be recovered in crude extracts, but not in solutions of the purified enzyme, by incubation with 3 M KCl and 5 mM NAD or NADP. As determined by gel filtration, enzymatically active GlcDH has a molecular weight of about 115,000 (if the enzyme is assumed to be globular). GlcDH is distinct from a catabolite-repressible inositol dehydrogenase (EC 1.1.1.18), which can also react with D-glucose, requires specifically NAD as a cofactor, and has an electrophoretic mobility different from that of GlcDH.  相似文献   

3.
1L-Inositol 1-phosphate synthase (EC 5.5.1.4) devoid of bound NAD+ was isolated from mature pollen of Lilium longiflorum ( Easter lily ). The enzyme has a molecular weight of 157,000 +/- 15,000 and a subunit weight of 61,000 +/- 5,000. Kinetic studies of the uninhibited reaction and of inhibition by 2-deoxy-D-glucose 6-phosphate and NADH show the reaction to be ordered sequential with NAD+ adding first. The Michaelis constants for NAD+ and D-glucose 6-phosphate are 2.4 and 65 microM, respectively. The Ki for 2-deoxy-D-glucose 6-phosphate was 8.7 and 2.0 microM, respectively, when D-glucose 6-phosphate or NAD+ was varied. The Ki for NADH and variable NAD+ was 4.7 microM and, for NADH and variable D-glucose 6-phosphate, 3.9 microM.  相似文献   

4.
A new enzyme, D-threo-aldolse dehydrogenase (2S,3R-aldose dehydrogenase), found in Pseudomonas caryophylli, was capable of oxidizing L-glucose L-xylose, D-arabinose, and L-fucose in the presence of NAD+. The enzyme was synthesized constitutively and purified about 120-fold from D-glucose-grown cells. The Km values for L-glucose, L-xylose, D-arabinose, and L-fucose were 1.5 . 10(-2), 4.5 . 10(-3), 2.8 . 10(-3), and 2.1 . 10(-3), respectively. D-glucose and other aldoses inhibited the enzyme reaction; this inhibition was competitive with L-glucose as substrate and D-glucose as inhibitor. The optimum pH for the enzyme reaction was 10; the molecular weight of the enzyme was determined by gel filtration to be 7 . 10(4).  相似文献   

5.
Hydroxylamine oxidoreductase [EC 1.7.3.4] of Nitrosomonas europaea was purified to an electrophoretically homogeneous state and some of its properties were studied. The molecular weight of the enzyme as determined by gel filtration on Sephadex G150 and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate is 175,000-180,000, while the minimum molecular weight per heme determined from the dry weight and heme content is 17,500. The enzyme is a C-type cytochrome; its reduced form shows absorption peaks at 418 (gamma peak), 521 (beta peak), 553 (alpha peak), and 460 nm (due to an unidentified chromophore). Although the alpha peak at 553 nm has a shoulder at 559 nm, the enzyme does not posses protoheme or a cytochrome b subunit. It seems likely that the enzyme molecule possess heme c molecules in different states. The enzyme reacts rapidly with various eukaryotic cytochromes c, but does not react with "bacterial-type" cytochromes c. Although the enzyme does not react with cytochrome c-552 (N. europaea), another C-type cytochrome of the organism, cytochrome c-554 (N. europaea) acts as an electron acceptor for the enzyme.  相似文献   

6.
1) Glucose dehydrogenase from Bacillus megaterium has been purified to a specific activity of 550 U per mg protein. The homogeneity of the purified enzyme was demonstrated by gel electrophoresis and isoelectric focusing. 2) The amino acid composition has been determined. 3) The molecular weight of the native enzyme was found to be 116000 by gel permeation chromatography, in good agreement with the values of 120000 and 118000, which were ascertained electrophoretically according to the method of Hedrick and Smith and by density gradient centrifugation, respectively. 4) In the presence of 0.1% sodium dodecylsulfate and 8M urea, the enzyme dissociates into subunits with a molecular weight of 30000 as determined by dodecylsulfate gel electrophoresis. These values indicate that the native enzyme is composed of four polypeptide chains, each probably possessing one coenzyme binding site, which can be concluded from fluorescent titration of the NADH binding sites. 5) In polyacrylamide disc electrophoresis, samples of the purified enzyme exhibit three bands of activity, which present the native (tetrameric) form of glucose dehydrogenase and two monomeric forms (molecular weight 30000), arising under the conditions of pH and ionic strength of this method. 6) The enzyme shows a sharp pH optimum at pH 8.0 in Tris/HCl buffer, and a shift of the pH optimum to pH 9.0 in acetate/borate buffer. The limiting Michaelis constant at pH 9.0 for NAD is 4.5 mM and 47.5 mM for glucose. The dissociation constant for NAD is 0.69 mM. 7) D-Glucose dehydrogenase is highly specific for beta-D-glucose and is capable of using either NAD or NADP. The enzyme is insensitive to sulfhydryl group inhibitors, heavy metal ions and chelating agents.  相似文献   

7.
Limonoate dehydrogenase from Rhodococcus fascians has been purified to electrophoretic homogeneity by a procedure that consists of ion-exchange, hydrophobic, and affinity chromatography. The native enzyme has a molecular mass of around 128,000 Da and appears to be composed of four similar subunits (30,000 Da each). The isoelectric point is 4.9 as determined by isoelectric focusing. The homogeneous enzyme was used to determine the NH2-terminal amino acid sequence. The enzyme was purified from cells grown in either fructose or limonoate as a carbon source. Limonoate dehydrogenase activity was higher in limonoate-grown cultures. Additionally, the enzyme preparations differed in their affinity for limonoids but not for NAD+. In all cases limonoate dehydrogenase exhibited a higher catalytic rate and stronger affinity for limonoate A-ring lactone than for disodium limonoate, the limonoid traditionally used for in vitro activity assays. Our data confirm previous reports proposing that limonoate A-ring lactone is the physiological substrate for limonoate dehydrogenase. The increase in limonoate dehydrogenase activity observed in limonoate-grown cultures appears to be caused by a rise in protein levels, since chloramphenicol prevented such an effect.  相似文献   

8.
Valine dehydrogenase was purified to homogeneity from the crude extracts of Streptomyces aureofaciens. The molecular weight of the native enzyme was 116,000 by equilibrium ultracentrifugation and 118,000 by size exclusion high-performance liquid chromatography. The enzyme was composed of four subunits with molecular weights of 29,000. The isoelectric point was 5.1. The enzyme required NAD+ as a cofactor, which could not be replaced by NADP+. Sulfhydryl reagents inhibited the enzyme activity. The pH optimum was 10.7 for oxidative deamination of L-valine and 9.0 for reductive amination of alpha-ketoisovalerate. The Michaelis constants were 2.5 mM for L-valine and 0.10 mM for NAD+. For reductive amination the Km values were 1.25 mM for alpha-ketoisovalerate, 0.023 mM for NADH, and 18.2 mM for NH4Cl.  相似文献   

9.
Various omega-halogenated carboxy acids and amides were evaluated as potential active-site-directed reagents for alcohol dehydrogenase. 2-Bromoacetamide and bromoacetic and 3-bromopropionic acids inactivated the enzyme; AMP, NAD+, and NADH markedly decreased the rate of inactivation. Some omega-halogenated carboxyamides, X(CH2)nCONH2, increased the activity of the enzyme with the rate and extent of activation depending on the number of methylene units (n) in the order 3 greater than 4 greater than 2 and on X in the order Br greater than Cl. 4-Chlorobutyramide (0.1 M) activated the horse liver enzyme 20-fold in 24 hr at pH 8.0 and 25 degrees. The activation was not prevented by AMP or 2,2-bipyridine, but was by NADH. The kinetic constants and turnover numbers for human and horse liver alcohol dehydrogenases treated with chlorobutyramide were increased markedly compared to those for native enzymes. Alcohol dehydrogenase treated with chlorobutyramide was not further activated by methyl picolinimidate, an imidoester which activates native enzyme by modifying amino groups in the active sites. Chlorobutyramide does not appear to react directly with the enzyme but cyclizes in the reaction medium to form an intermediate imidoester, 2-iminotetrahydrofuran, which reacts with most of the amino groups of the enzyme.  相似文献   

10.
Mitochondrial NADH dehydrogenase (NADH:(acceptor) oxidoreductase, EC .6.99.3) from either Drosophila hydei larvae or embryos has been purified 150- and 120-fold, respectively. The purified enzyme appeared homogeneous and showed a molecular weight of 57 000. The molecular weight of the nondenatured enzyme was 79 000. On isoelectro-focussing of the preparation, two fractions were observed, a major one with an isoelectric point of 6.2 and a minor fraction with an isoelectric point of 4.9. Straight-line kinetics in Lineweaver-Burk plots were observed for the purified enzyme with a Km of 0.040 mM. The Km was not changed during the purification procedure, suggesting that the enzyme was not denatured or inactivated. The pH optimum of the purified enzyme was 5.6. The molecular weight of the purified mitochondrial NADH dehydrogenase does not correspond to that of one of the 'heat-shock' polypeptides.  相似文献   

11.
NAD+-dependent formate dehydrogenase was screened in various bacterial strains. Facultative methanol-utilizing bacteria isolated from soil samples, acclimated to a medium containing methanol and formate at pH 9.5, were classified as members of the genus Moraxella. From a crude extract of Moraxella sp. strain C-1, formate dehydrogenase was purified to homogeneity, as judged by disc gel electrophoresis. The enzyme has an isoelectric point of 3.9 and a molecular weight of approximately 98,000. The enzyme is composed of two identical subunits with molecular weights of about 48,000. The apparent Km values for sodium formate and NAD+ were calculated to be 13 mM and 0.068 mM, respectively.  相似文献   

12.
A novel enzyme system, myo-inositol-1-phosphate dehydrogenase, has been isolated from germinating mung bean seeds. The dehydrogenation and cleavage of myo-inositol 1-phosphate by this enzyme leads to the synthesis of a pentose phosphate which appears to be ribulose 5-phosphate. The pH optimum of the enzyme is 8.6; NAD+ is required as coenzyme and no other nucleotides can replace NAD+. Mono- or divalent cations are not essential for the enzyme activity. Stoichiometry of the reaction suggests that 2 mol of NAD+ are reduced per mol of ribulose-5-P generated.  相似文献   

13.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

14.
Crystalline d-glyceraldehyde 3-phosphate dehydrogenase from lobster tail contains 4 moles of NAD(+) bound and reacts specifically with 4 moles of iodoacetic acid/mole of tetramer. The essential thiol group of d-glyceraldehyde 3-phosphate dehydrogenase appears to react with iodoacetic acid with a rate constant for the overall process that is independent of the extent of carboxymethylation. The d-glyceraldehyde 3-phosphate dehydrogenase-NAD(+) absorption band has a variable molar extinction coefficient in the presence of phosphate that may be correlated with a proton dissociation of pK 6.86. The binding of NAD(+) to d-glyceraldehyde 3-phosphate dehydrogenase weakens as alkylating agents react with the enzyme, and NAD(+) promotes the reactivity of the essential thiol group. It is suggested that, on binding to d-glyceraldehyde 3-phosphate dehydrogenase, NAD(+) lowers the pK of the essential thiol group, resulting in a catalytic role of NAD(+) in the reaction catalysed by d-glyceraldehyde 3-phosphate dehydrogenase. If this theory is correct, then it is likely that a proton will be liberated during the phosphorolysis of the acyl-enzyme rather than in the redox step.  相似文献   

15.
myo-Inositol transport by retinal capillary pericytes in culture was characterized. The major myo-inositol transport process was sodium-dependent, ouabain-sensitive, and saturable at 40 mM, indicating a carrier-mediated process. The sodium ion concentration required to produce one-half the maximal rate of myo-inositol uptake ([Na+]0.5) did not show dependence on the external myo-inositol concentration (22.3 mM sodium for 0.005 mM myo-inositol; 18.2 mM sodium for 0.05 mM myo-inositol). myo-Inositol transport was an energy-dependent, active process functioning against a myo-inositol concentration gradient. The kinetics of the sodium-dependent system fitted a 'velocity type' co-transport model where binding of sodium ion to the carrier increased the velocity (Vmax 28 to 313 pmol myo-inositol/micrograms DNA per 20 min when [Na+] varied from 9 to 150 mM) but not the affinity for myo-inositol (Km 0.92 to 0.83 mM when [Na+] varied from 9 to 150 mM). Metabolizable hexoses (D-glucose or D-galactose; greater than 5 mM) inhibited myo-inositol uptake. Dixon-plot analysis indicated that the inhibition was non-competitive with a Ki of 22.7 mM for D-glucose and 72.6 mM for D-galactose. The inhibition was significantly reversed by Sorbinil (0.1 mM), an aldose reductase inhibitor. In contrast, high concentrations of non-metabolizable hexoses (L-glucose, 3-O-methyl-D-glucose), or partially metabolizable 2-deoxy-D-glucose, did not significantly inhibit myo-inositol uptake. The inhibitory effect of D-glucose or D-galactose on myo-inositol transport appeared to be related to glucose or galactose metabolism via the polyol pathway.  相似文献   

16.
1. Pre-modification of cytoplasmic aldehyde dehydrogenase by disulfiram results in the same extent of inactivation when the enzyme is subsequently assayed as a dehydrogenase or as an esterase. 2. 4-Nitrophenyl acetate protects the enzyme against inactivation by disulfiram, particularly well in the absence of NAD+. Some protection is also provided by chloral hydrate and indol-3-ylacetaldehyde (in the absence of NAD+). 3. When disulfiram is prevented from reacting at its usual site by the presence of 4-nitrophenyl acetate, it reacts elsewhere on the enzyme molecule without causing inactivation. 4. Enzyme in the presence of aldehyde and NAD+ is not at all protected against disulfiram. It is proposed that, under these circumstances, disulfiram reacts with the enzyme-NADH complex formed in the enzyme-catalysed reaction. 5. Modification by disulfiram results in a decrease in the amplitude of the burst of NADH formation during the dehydrogenase reaction, as well as a decrease in the steady-state rate. 6. 2,2'-Dithiodipyridine reacts with the enzyme both in the absence and presence of NAD+. Under the former circumstances the activity of the enzyme is little affected, but when the reaction is conducted in the presence of NAD+ the enzyme is activated by approximately 2-fold and is then relatively insensitive to the inactivatory effect of disulfiram. 7. Enzyme activated by 2,2'-dithiodipyridine loses most of its activity when stored over a period of a few days at 4 degrees C, or within 30 min when treated with sodium diethyldithiocarbamate. 8. Points for and against the proposal that the disulfiram-sensitive groups are catalytically essential are discussed.  相似文献   

17.
1. The sorbitol dehydrogenases [L-iditol: NAD oxidoreductase] from livers of cow, man, rat and sheep each possess molecular weights of about 140,000. The beef, rat and sheep liver enzymes are composed of subunits of molecular weight 40,000. 2. The sorbitol dehydrogenases from livers of these four species each possess an isoelectric point of 7.3. 3. The four enzyme preparations show identical mobilities upon disc-gel electrophoresis and yield a single band of enzymic activity. 4. Sorbitol dehydrogenase activity is activated by the presence of ampholines or by increasing ionic strengths, with maximal activation at about 0.5 M salt concentration. These factors may cause the Km for NAD to be lowered.  相似文献   

18.
L-beta-Hydroxyacid dehydrogenase (L-beta-hydroxyacid-NAD-oxidoreductase, EC 1.1.1.45) of Drosophila is composed of two, identical subunits with a molecular weight of approx. 33 300. The enzyme was purified 938-fold from Drosophila melanogaster. An isoelectric point of 8.6 was determined for L-beta-hydroxyacid dehydrogenase. An amino acid analysis was conducted of the purified enzyme. A single subunit was obtained by SDS-gel electrophoresis of the purified enzyme. Translation of larval and adult mRNA in a mRNA-dependent reticulocyte lysate, followed by immune precipitation using anti-L-beta-hydroxyacid dehydrogenase IgG revealed a single L-beta-hydroxyacid dehydrogenase subunit of 33 300. Larval and adult proteins were the same size. The enzyme does not appear to be subjected to substantial post-translational modifications.  相似文献   

19.
A new enzyme, N-acyl-D-mannosamine dehydrogenase, was purified to apparent homogeneity from a cell-free extract of Flavobacterium sp. 141-8 and some of its properties were investigated. The enzyme showed optimum activity at pH 8.0-9.5. N-Acetyl- and N-glycolyl-D-mannosamine were oxidized but other commonly existing sugars, such as N-acetylglucosamine, N-acetylgalactosamine, amino sugars, neutral hexoses, and pentoses, were not oxidized. NAD+ was specifically utilized as an effective hydrogen acceptor. The apparent Km values for N-acetyl- and N-glycolyl-D-mannosamine, and NAD+ were 1.0, 13.3, and 0.41 mM, respectively. The stoichiometry data showed that 1 mol each of N-acetyl-D-mannosamine and NAD+ were converted to 1 mol each of N-acetyl-D-mannosaminic acid and NADH, respectively. Although the formation of lactone was detected in the enzyme reaction mixture, the reverse reaction of the enzyme, the reduction of N-acetyl-D-mannosamino-lactone, was not observed. The enzyme activity was strongly inhibited by Hg2+ and SDS, but metal-chelating reagents and sulfhydryl-group-blocking reagents had almost no effect. The molecular weight of the enzyme was estimated to be 120,000 on gel filtration and 29,000 on SDS-polyacrylamide gel electrophoresis. Its isoelectric point was at pH 4.8. On trial application of the enzyme, it was indicated that N-acetylneuraminic acid can be determined quantitatively with the combined enzyme system involving the new enzyme and N-acetylneuraminic acid aldolase.  相似文献   

20.
The NADP(+)-preferring glucose dehydrogenase from thermoacidophilic archaeon Thermoplasma acidophilum has been characterized, and its crystal structure has been determined (Structure, 2:385-393, 1994). Its sequence and structure are not homologous to bacterial NAD(P)(+)-dependent glucose dehydrogenases, and its molecular weight is also quite defferent. On the other hand, three functionally unknown genes with homologies to bacterial NAD(P)(+)-dependent glucose dehydrogenases have been sequenced as part of the T. acidophilum genome project (gene names: Ta0191, Ta0747, and Ta0754 respectively). We expressed two genes of three, Ta0191 and Ta0754, in Escherichia coli, and purified the gene products to homogeneity. Dehydrogenase activities were thereby detected from the purified proteins. The Ta0754 gene product exhibited aldohexose dehydrogenase activity, and the Ta0191 gene product exhibited weak 2-deoxyglucose dehydrogenase activity. No aldohexose dehydrogenase gene has been isolated, while the enzyme was reported in 1968. This is the first report of the gene and primary structure. The purified Ta0754 gene product, designated AldT, was characterized. The enzyme AldT effectively catalyzed the oxidation of various aldohexoses, especially D-mannose. Lower activities on D-2-deoxyglucose, D-xylose, D-glucose, and D-fucose were detected although no activities were shown on other aldohexoses or additional sugars. As a cofactor, NAD(+) was much more suitable for the activity than NADP(+). The NAD(+)-preferring dehydrogenase most effectively reacting to D-mannose is for the first time. AldT was most active at pH 10 and above 70 degrees C, and completely stable up to 60 degrees C after incubation for 15 min. Other enzymatic properties were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号