首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complement sensitization of red blood cells (RBCs) can cause life-threatening hemolytic anemias. We have previously shown that complement receptor 1 (CR1) derivatives specifically the N-terminal region with decay accelerating activity (DAA) for inactivation of a key enzyme in the complement cascade can reduce complement-mediated RBC destruction in vitro and in an in vivo mouse model of hemolytic transfusion reaction. In the present study, we have modeled the N-terminal CR1 molecule based on the X-ray crystal structure of decay accelerating factor and the NMR structure of a homologous CR1 domain. Based on the homology model, we identified a 34-mer peptide encompassing the putative DAA which in vitro reduced hemolysis, C3a release and surface C3 deposition. More importantly, this peptide at 0.6 mM was effective in prolonging survival of transfused incompatible RBCs in vivo. Our results indicate that CR1-based structure-function studies may provide insights for developing structure-derived transfusion therapeutics in the future.  相似文献   

2.
Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. This makes RBCs highly sensitive to any aberration. If so, these RBCs are quickly removed from circulation, but if the RBC levels reduce extremely fast, this results in hemolytic anemia. Several causes of HA exist, and proteome analysis is the most straightforward way to obtain deeper insight into RBC functioning under the stress of disease. This should result in discovery of biomarkers, typical for each source of anemia. In this review, several challenges to generate in-depth RBC proteomes are described, like to obtain pure RBCs, to overcome the wide dynamic range in protein expression, and to establish which of the identified/quantified proteins are active in RBCs. The final challenge is to acquire and validate suited biomarkers unique for the changes that occur for each of the clinical questions; in red blood cell aging (also important for transfusion medicine), for thalassemias or sickle cell disease. Biomarkers for other hemolytic anemias that are caused by dysfunction of RBC membrane proteins (the RBC membrane defects) or RBC cytosolic proteins (the enzymopathies) are sometimes even harder to discover, in particular for the patients with RBC rare diseases with unknown cause. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

3.
Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal1. Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis1-4. However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation.  相似文献   

4.
During the last 90 years many developments have taken place in the world of blood transfusion. Several anticoagulants and storage solutions have been developed. Also the blood processing has undergone many changes. At the moment, in The Netherlands, red blood cell (RBC) concentrates (prepared from a whole blood donation and leukocyte-depleted by filtration) are stored for a maximum of 35 days at 4 degrees C in saline adenine glucose mannitol (SAGM). Most relevant studies show that approximately 20% of the RBCs is lost in the first 24 hr after transfusion. Even more remarkable is that the average life span is 94 days after a storage period of 42-49 days. Such observations create the need for a parameter to measure the biological age of RBCs as a possible predictor of the fate of RBCs after transfusion. The binding of IgG to RBCs can lead to recognition and subsequent phagocytosis by macrophages. This occurs during the final stages of the RBC life span in vivo. We determined the quantity of cell-bound IgG during storage, and found considerable variation between RBCs, but no significant storage-related change in the quantity of cell-bound IgG. The significance of this finding for predicting the survival of transfused RBCs in vivo remains to be established. Hereto we developed a flow cytometric determination with a sensitivity of 0.1% for the measurement of survival in vivo based on antigenic differences. This technique has various advantages compared with the 'classical' 51Cr survival method.  相似文献   

5.
《Life sciences》1994,55(3):PL55-PL60
It has been hypothesized that enhanced oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD) deficient red cells(RBCs) is the underlying mechanism for drug- or chemical-induced hemolytic crises in G6PD-deficiency. To further test this hypothesis, we used an alloxanglutathione system to mimic oxidative stress and see how oxidative damage might affect RBC deformability. RBC deformability, a major determinant of RBC survival in vivo, was monitored by a laser viscodiffractometer. Under our experimental conditions, GSH alone had very little effect on the deformability of either normal or G6PD-deficient RBCs. In contrast, alloxan alone induced a small but significant decrease in the deformability of either normal or G6PD-deficient RBCs. Interestingly, alloxan and GSH together induced a further decrease in the deformability of either normal or G6PD-deficient RBCs. The decrease in deformability in G6PD-deficient RBCs was much more profound than in normal RBCs. In addition, an alloxan-vitamin C system produced a similar deleterious effect on RBC deformability as that produced by the alloxan-GSH system. Appreciable amount of hydroxyl radicals was generated by both alloxan-GSH and alloxan-vitamin C systems as evidenced by the production of hydroxylated products of salicylate which was used as a radical trap. Moreover, salicylate could ameliorate the deleterious effect of the alloxan system on the deformability of RBCs. Taken together, our results demonstrated that G6PD-deficient RBCs were particularly susceptible to oxidant-induced damage leading to a dramatic decrease in their deformability and thus provided strong support for the hypothesis that enhanced oxidant sensitivity of G6PD-deficient RBCs is the underlying mechanism for accelerated destruction of these RBCs in vivo.  相似文献   

6.
Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Pro-oxidant, pro-inflammatory, and nitric oxide (NO) scavenging properties of stored RBCs are thought to underlie this association. In this study we determined the effects of RBC washing and nitrite and antiheme therapy on stored RBC-dependent toxicity in the setting of trauma-induced hemorrhage. A murine (C57BL/6) model of trauma–hemorrhage and resuscitation with 1 or 3 units of RBCs stored for 0–10 days was used. Tested variables included washing RBCs to remove lower MW components that scavenge NO, NO-repletion therapy using nitrite, or mitigation of free heme toxicity by heme scavenging or preventing TLR4 activation. Stored RBC toxicity was determined by assessment of acute lung injury indices (airway edema and inflammation) and survival. Transfusion with 5 day RBCs increased acute lung injury indexed by BAL protein and neutrophil accumulation. Washing 5 day RBCs prior to transfusion did not decrease this injury, whereas nitrite therapy did. Transfusion with 10 day RBCs elicited a more severe injury resulting in ~90% lethality, compared to <15% with 5 day RBCs. Both washing and nitrite therapy significantly protected against 10 day RBC-induced lethality, suggesting that washing may be protective when the injury stimulus is more severe. Finally, a spectral deconvolution assay was developed to simultaneously measure free heme and hemoglobin in stored RBC supernatants, which demonstrated significant increases of both in stored human and mouse RBCs. Transfusion with free heme partially recapitulated the toxicity mediated by stored RBCs. Furthermore, inhibition of TLR4 signaling, which is stimulated by heme, using TAK-242, or hemopexin-dependent sequestration of free heme significantly protected against both 5 day and 10 day mouse RBC-dependent toxicity. These data suggest that RBC washing, nitrite therapy, and/or antiheme and TLR4 strategies may prevent stored RBC toxicities.  相似文献   

7.
T R Hinds  W P Hammond  L Maggio-Price  R A Dodson  F F Vincenzi 《Blood cells》1989,15(2):407-20; discussion 421-6
A mild hereditary nonspherocytic anemia in Beagle dogs was studied. Compared to RBCs from normal dogs, RBCs from hemolytic Beagles were larger on average, contained more potassium, and exhibited an approximately 50% decrease in rate of loss of ATP induced by Ca and the ionophore, A23187. Under certain conditions, this rate of ATP loss can be taken as a measure of the Ca pump ATPase activity of intact RBCs. From RBC fractionation studies it appeared that the defective Ca pump ATPase was acquired during the relatively short life-span of the hemolytic RBC. Significant loss of Ca pump ATPase may be causally related to the hemolytic anemia. The mechanism(s) by which Ca pump ATPase activity is lost in this hemolytic anemia remain(s) to be determined.  相似文献   

8.
本文将国外脊椎动物血清补体溶血活性标准测定方法,运用到荷斯坦种公牛研究中,首次建立了测定荷斯坦种公牛血清补体溶血ACH50的方法。种公牛血清经相应靶红细胞吸附后,可溶解悬浮在EGTAMgGVB缓冲液中的正常的兔血红细胞、人A,B,AB,O型红细胞,小鼠、大鼠、鸡红细胞,但对绵羊、山羊、猪红细胞溶血活性较低;对奶牛红细胞无溶血活性。且发现种公牛血清的溶血活性和靶红细胞的动物种类在系统发育上和种公牛的亲缘关系远近没有直接联系。种公牛血清在EGTAMgGVB缓冲液中对兔血红细胞发生溶血的最适条件是:温度是37℃,最适pH是7.3-7.4,最适Mg2 的浓度是4mmol/L,最适孵育时间为90min。溶血活性是二价离子依赖、热敏感(溶血活性热灭活温度是56℃)。种公牛血清对兔血红细胞的溶血活性在受到酵母聚糖、甲胺、肼、EDTA、鸡抗酵母聚糖牛血清结合物抗血清处理时,溶血活性可全部或部分消失,溶血活性抑制程度与补体抑制剂浓度相关。我们运用建立的标准溶血方法并以兔血红细胞作为指示细胞检测不同年龄的53头种公牛血清补体替代途径的溶血活性,溶血值在13.2-44.3u/ml之间,还发现不同年龄组公牛之间溶血活性有随年龄增加而逐步增大趋势,但差异不显著(P>0.05),在4-5岁公牛群中达到最大值。对种公牛血清补体系统溶血水平进行系统研究,一方面可以填补国内在此领域研究空白,另一方面也利于种公牛疾病监测、控制,此外也为兽医临床诊断试剂的研制提供新的技术手段。  相似文献   

9.
Objectives: Fanconi anaemia (FA) is a cancer‐prone chromosome instability syndrome characterized by hypersensitivity to DNA cross‐linking agents, such as diepoxybutane (DEB). Previous studies have shown that normal red blood cells (RBC) can protect cultured lymphocytes against chromosomal breaks induced by DEB. The present study was designed to analyse influence of RBCs from normal individuals on frequency of DEB‐induced chromosome breaks in lymphocyte cultures from FA patients. Materials and methods: A comparative study was performed between DEB‐induced chromosome breaks in cultures of FA lymphocytes with either autologous or heterologous RBCs. A further comparative study was carried out between whole blood cultures from FA patients performed on two occasions, before and 1 week after transfusion of RBCs. Results: It was observed that normal RBCs compared to FA RBCs, partially reduced chromosome breaks in cultured FA lymphocytes. A significant reduction in DEB‐induced breaks was also observed in FA cultured lymphocytes obtained 1 week after transfusion of RBCs, in comparison to those observed in the same patients before RBC transfusion. Conclusions: This study shows that DEB‐induced chromosome instability in FA lymphocytes is partially reduced by normal RBCs. This effect may have some clinical relevance in vivo, whenever FA patients receive a RBC transfusion.  相似文献   

10.
Responses to exchange transfusion using red blood cells (RBCs) with normal and reduced flexibility were studied in the hamster window chamber model during acute moderate isovolemic hemodilution to determine the role of RBC membrane stiffness in microvascular perfusion and tissue oxygenation. Erythrocyte stiffness was increased by 30-min incubation in 0.02% glutaraldehyde solution, and unreacted glutaraldehyde was completely removed. Filtration pressure through 5-microm pore size filters was used to quantify stiffness of the RBCs. Anemic conditions were induced by two isovolemic hemodilution steps using 6% 70-kDa dextran to a hematocrit (Hct) of 18% (moderate hemodilution). The protocol continued with an exchange transfusion to reduce native RBCs to 75% of baseline (11% Hct) with either fresh RBCs (RBC group) or reduced-flexibility RBCs (GRBC group) suspended in 5% albumin at 18% Hct; a plasma expander (6% 70-kDa dextran; Dex70 group) was used as control. Systemic parameters, microvascular perfusion, capillary perfusion [functional capillary density (FCD)], and oxygen levels across the microvascular network were measured by noninvasive methods. RBC deformability for GRBCs was significantly decreased compared with RBCs and moderate hemodilution conditions. The GRBC group had a greater mean arterial blood pressure (MAP) than the RBC and Dex70 groups. FCD was substantially higher for RBC (0.81 +/- 0.07 of baseline) vs. GRBC (0.32 +/- 0.10 of baseline) and Dex70 (0.38 +/- 0.10 of baseline) groups. Microvascular tissue Po(2) was significantly lower for Dex70 and GRBC vs. RBC groups and the moderate hemodilution condition. Results were attributed to decreased oxygen uploading in the lungs and obstruction of tissue capillaries by rigidified RBCs, indicating that the effects impairing RBC flexibility are magnified at the microvascular level, where perfusion and oxygenation may define transfusion outcome.  相似文献   

11.
Li H  Tu H  Wang Y  Levine M 《Analytical biochemistry》2012,426(2):109-117
Although vitamin C (ascorbate) is present in whole blood, measurements in red blood cells (RBCs) are problematic because of interference, instability, limited sensitivity, and sample volume requirements. We describe a new technique using HPLC with coulometric electrochemical detection for ascorbate measurement in RBCs of humans, wild-type mice, and mice unable to synthesize ascorbate. Exogenously added ascorbate was fully recovered even when endogenous RBC ascorbate was below the detection threshold (25 nM). Twenty microliters of whole blood or 10 μl of packed RBCs was sufficient for assay. RBC ascorbate was stable for 24h from whole-blood samples at 4°C. Processed, stored samples were stable for >1 month at -80°C. Unlike other tissues, ascorbate concentrations in human and mouse RBCs were linear in relation to plasma concentrations (R=0.8 and 0.9, respectively). In healthy humans, RBC ascorbate concentrations were 9-57 μM, corresponding to ascorbate plasma concentrations of 15-90 μM. Mouse data were similar. In human blood stored as if for transfusion, initial RBC ascorbate concentrations varied approximately sevenfold and decreased 50% after 6 weeks of storage under clinical conditions. With this assay, it becomes possible for the first time to characterize ascorbate function in relation to endogenous concentrations in RBCs.  相似文献   

12.
Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25?days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk.  相似文献   

13.
Red blood cells (RBCs) can be cryopreserved using glycerol as a cryoprotective agent, but one of the main disadvantages is the time-consuming deglycerolization step. Novel cryopreservation strategies for RBCs using nontoxic cryoprotective agents are urgently needed. The effect of DMPC, DOPC, and DPPC liposomes on survival of RBCs cryopreserved with trehalose and HES has been evaluated. DMPC caused hemolysis before freezing and affected RBC deformability parameters. DMPC treated RBCs displayed a strong increase in trehalose uptake compared to control cells, whereas DOPC treated liposomes only displayed a slight increase in trehalose uptake. High intracellular trehalose contents were observed after cryopreservation. The recovery of cells incubated with trehalose and liposomes, frozen in HES ranged between 92.6 and 97.4% immediately after freezing. Recovery values of RBCs frozen in HES, however, decreased to 66.5% after 96 h at 4°C compared to 77.5% for DOPC treated RBCs. The recovery of RBCs incubated and frozen in trehalose medium was 77.8%. After 96 hours post-thaw storage recovery of these cells was 81.6%. DOPC and DPPC treated RBCs displayed higher recovery rates (up to 89.7%) after cryopreservation in trehalose compared to control RBCs. Highest survival rates were obtained using a combination of trehalose and HES: 97.8% directly after thawing and 81.8% 96-h post-thaw. DOPC liposomes, trehalose and HES protect RBCs during cryopreservation in a synergistic manner. The advantage is that the protective compounds do not need to be removed before transfusion.  相似文献   

14.
Red blood cells (RBCs) are stored up to 35–42 days at 2–6 °C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft–associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed.  相似文献   

15.
In anuran amphibians, larval red blood cells (RBCs) are replaced by adult-type RBCs during metamorphosis. We previously showed that tumor necrosis factor-related apoptosis-inducing ligand 1 (TRAIL1) induces apoptosis in larval-, but not adult-type RBCs in Xenopus laevis. We also found that protein kinase C (PKC) activation is involved in establishing resistance to TRAIL1-induced apoptosis in adult-type RBCs. Here, we investigated whether erythropoietin (EPO), which induces PKC activation in mammalian erythroblasts, is involved in the RBC transition in X. laevis. RT-PCR analysis revealed that epo mRNA was upregulated in the lung, from the metamorphic climax (stage 60) onward. In an RBC culture system, EPO pretreatment significantly attenuated the TRAIL1-induced death of larval- and adult-type RBCs isolated from tadpoles and adults, probably due partly to PKC activation. In samples from froglets undergoing RBC transition, which included both larval- and adult-type RBCs, EPO exhibited a stronger protective effect on the adult-type than the larval-type RBCs. Newly differentiated RBCs isolated from tadpoles treated with a hemolytic reagent were more resistant to TRAIL1-induced cell death than non-treated controls. These results suggest that EPO functions to protect adult-type RBCs from TRAIL1-induced cell death during RBC transition, and that the protective effect might decrease as RBCs age.  相似文献   

16.
Autoimmune hemolytic anemia (AIHA) is a disorder associated with the destruction of red blood cells (RBCs) by autoantibodies. We report a rare case of AIHA in an infant rhesus macaque (Macaca mulatta) which received a continuous administration of four drugs, a dopamine agonist. dopamine receptor inhibitor, and two gamma-aminobutyric acid receptor inhibitors into the brain during the course of neurophysiological experiments. The main clinical findings were severe anemia and splenomegaly. Hematological and serological examinations revealed the appearance of peripheral erythroblasts and autoantibodies against RBCs. Medical treatments, including washed RBC transfusion and corticosteroids, transiently improved the animal's anemia, but euthanasia was decided on 331 days after the start of the experiment. The pathological findings revealed severe anemia, splenomegaly, and extramedullary hematopoiesis in the liver and kidneys. These findings and the clinical course suggest that this anemia was a warm-antibody type of AIHA induced by the administration of the drugs for the neurophysiological experiment.  相似文献   

17.
The cell surface glycoprotein CD47 on target cells can bind to the inhibitory receptor SIRPalpha on macrophages to inhibit phagocytosis of antibody sensitized blood cells. The aim of this study was to determine if CD47 dose-dependently can regulate macrophage uptake of IgG-opsonized RBCs. CD47(+/-) RBCs express about 50% of the CD47 level found on CD47(+/+) RBCs. When injected into CD47(+/+) mice, CD47(+/-) RBCs showed a significantly faster antibody-mediated clearance as compared with CD47(+/+) RBCs injected into the same recipient. In vitro phagocytosis experiments confirmed that CD47(+/-) RBCs were taken up significantly more than CD47(+/+) RBCs, but significantly less than CD47(-/-) RBCs. A reduction in RBC CD47 expression just below 50% of that in normal RBCs can significantly accelerate RBC clearance by macrophages in the presence of RBC autoantibodies. This may have relevance for transfusion of stored RBCs, where loss of CD47 is seen over time, and in clearance of these cells by antibody-dependent phagocytosis.  相似文献   

18.
Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and promote senescence, but is without chronic hemolytic complaints. In this review we summarize the often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH is the main source of reduction equivalents in RBCs, used by most of the protective systems. When NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give rise to increased oxidative stress caused by free heme and iron generated from hemoglobin. The beneficial effect of thalassemia minor, sickle-cell trait, and glucose-6-phosphate dehydrogenase deficiency on survival of malaria infection may well be due to the shared feature of enhanced oxidative stress. This may inhibit parasite growth, enhance uptake of infected RBCs by spleen macrophages, and/or cause less cytoadherence of the infected cells to capillary endothelium.  相似文献   

19.
Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia 1-3. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens 4), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs 4, 5. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen ,glucose, and ions3. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers 6, 7, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane 8, 9 and mask RBC surface antigens10, 11.  相似文献   

20.
Oxidant stress, in vivo or in vitro, isknown to induce oxidative changes in human red blood cells (RBCs). Ourobjective was to examine the effect of augmenting RBC glutathione(GSH) synthesis on 1) degenerative protein loss and2) RBC chemokine- and free radical-scavenging functions inthe oxidatively stressed human RBCs by using banked RBCs as a model.Packed RBCs were stored up to 84 days at 1-6°C in Adsol or inthe experimental additive solution (Adsol fortified with glutamine,glycine, and N-acetyl-L-cysteine). Supplementingthe conventional additive with GSH precursor amino acids improved RBCGSH synthesis and maintenance. The rise in RBC -glutamylcysteineligase activity was directly proportional to the GSH content andinversely proportional to extracellular homocysteine concentration,methemoglobin formation, and losses of the RBC proteins band 3, band4.1, band 4.2, glyceraldehyde-3-phosphate dehydrogenase, and Duffyantigen (P < 0.01). Reduced loss of Duffy antigencorrelated well with a decrease in chemokine RANTES (regulated uponactivation, normal T-cell expressed, and secreted) concentration. Weconclude that the concomitant loss of GSH and proteins in oxidatively stressed RBCs can compromise RBC scavenging function. Upregulating GSHsynthesis can protect RBC scavenging (free radical and chemokine) function. These results have implications not only in a transfusion setting but also in conditions like diabetes and sickle cell anemia, inwhich RBCs are subjected to chronic/acute oxidant stresses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号