首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been previously shown that shoot tips of in vitro plantlets of sugar beet (Beta vulgaris L. clone SES1) can be cryopreserved using the encapsulation-dehydration technique (survival rate of 37% after freezing). This article reports the influence of abscisic acid (ABA) and cold acclimation on survival after cryopreservation. When ABA was added to the multiplication medium of the plants, the survival rate of shoot tips after cryopreservation was not increased (45%). After cold acclimation of the plants, their growth pattern differed (plants became apically dominant) and the survival rate of the shoot tips after cryopreservation clearly increased (70% survival and 50% plant regeneration after freezing). This improved protocol was successfully applied to three other clones. Received: 28 October 1996 / Revision received: 28 January 1997 / Accepted: 15 March 1997  相似文献   

2.

Key message

This study reveals for the first time a major QTL for post-winter bolting resistance in sugar beet ( Beta vulgaris L.). The knowledge of this QTL is a major contribution towards the development of a winter sugar beet with controlled bolting behavior.

Abstract

In cool temperate climates, sugar beets are currently grown as a spring crop. They are sown in spring and harvested in autumn. Growing sugar beet as a winter crop with an extended vegetation period fails due to bolting after winter. Bolting after winter might be controlled by accumulating genes for post-winter bolting resistance. Previously, we had observed in field experiments a low post-winter bolting rate of 0.5 for sugar beet accession BETA 1773. This accession was crossed with a biennial sugar beet with regular bolting behavior to develop a F3 mapping population. The population was grown in the greenhouse, exposed to artificial cold treatment for 16 weeks and transplanted to the field. Bolting was recorded twice a week from May until October. Post-winter bolting behavior was assessed by two different factors, bolting delay (determined as days to bolt after cold treatment) and post-winter bolting resistance (bolting rate after winter). For days to bolt, means of F3 families ranged from 25 to 164 days while for bolting rate F3 families ranged from 0 to 1. For each factor one QTL explaining about 65 % of the phenotypic variation was mapped to the same region on linkage group 9 with a partially recessive allele increasing bolting delay and post-winter bolting resistance. The results are discussed in relation to the potential use of marker-assisted breeding of winter sugar beets with controlled bolting.  相似文献   

3.
Changes in the fatty acid (FA) composition of leaf and root lipids of heat-loving tobacco (Nicotiana tabacum L., cv. Samsun) plants during low-temperature hardening (8°C for 6 days) were studied. Hardening could improve leaf but not root cold tolerance. As this took place, the relative content of polyunsaturated (18:2n-6 and 18:3n-3) FAs increased and the proportion of saturated and monounsaturated FAs decreased. In contrast, in the roots hardening slightly increased the concentration of saturated FAs (16:0 and 18:0) and reduced the level of unsaturated FAs (18:1n-9, 18:2n-6, and 18:3n-3). At the same time, root lipids contained much C20–24 FAs, and their content increased during hardening. It was suggested that an increased FA saturation and elevated proportion of C20–24 FAs in the root lipids resulting in the lower membrane fluidity could be a reason for incapability of heat-loving tobacco plant roots of hardening and plant death at the lowtemperature stress.  相似文献   

4.
Abstract Rapid cold hardening is a naturally occurring phenomenon in insects that is thought to be responsible for increased cold tolerance during diurnal variations in temperature. The underlying physiological mechanisms are still not fully resolved but, in Drosophila melanogaster (Meigen 1830), rapid cold hardening is accompanied by specific changes in the membrane lipid composition. To further understand the link between rapid cold hardening and adjustments in the membrane lipid composition, the present study investigates how different rates of cooling affect thermotolerance and the composition of phospholipid fatty acids. Female Drosophila are cooled gradually from 25 to 0 °C at 0.01, 0.05, 0.1 or 0.5 °C min?1, respectively, and, subsequently, phospholipid fatty acid composition and survival after a 1‐h cold shock at ?5 °C is measured. The rapid cold hardening treatments all influence cold tolerance differently so that short and intermediate rapid cold hardening treatments (0.05, 0.1 or 0.5 °C min?1 cooling rates) increase cold shock survival, whereas the slow cooling treatment (0.01 °C min?1) decreases survival relative to an untreated control. The intermediate rapid cold hardening treatments (0.05 or 0.1 °C min?1) induce a similar type of response characterized by an increase in the molar percentage of linoleic acid, 18:2(n‐6), at the expense of 16:0 and 18:1(n‐9), which leads to an increase in the degree of unsaturation. The slowest cooling treatment (0.01 °C min?1) results in a large increase in cis‐16:1(n‐7) and significant reductions in the saturated phospholipid fatty acids 16:0, 18:0 and the unsaturated 16:1(n‐9) and 18:2(n‐6) fatty acids. These changes cause a slight decrease in the average length of the phospholipid fatty acids and an increase in the overall ratio of unsaturated vs. saturated fatty acids. These findings demonstrate that the rate of cooling is important for both the reorganization of membrane lipids, and for the degree of acquired cold tolerance during rapid cold hardening, and they suggest an important role for rapid cold hardening during diurnal rather than seasonal temperature changes.  相似文献   

5.
The aim of this experiment was to study the effect of 24-epibrassinolide (BR27) on fatty acids composition and sugar content in winter oilseed rape callus cultured at 20 and 5°C. Studies have showed that BR27 action is highly temperature-dependent. The increase in sugar content (sucrose, glucose and fructose) by BR27 in concentration 100 nM was observed only in calli cultured at 20°C. At 5°C, quite the opposite effect of BR27 action was observed; where cold increased the sugar content, BR27 decreased it. BR27 at 20°C had a similar effect on the fatty acid composition of phospholipids (PL) as the cold in the process of frost hardening of oilseed rape calli. BR27 decreased the 16:0, 18:1 and 18:2 and increased the 18:3 fatty acid content. At 5°C, BR27 (100 nM) generally did not influence the fatty acid composition of PL. In case of digalactosyl diacylglycerols and monogalactosyl diacylglycerols, the influence of BR27 on the fatty acid composition is ambiguous but still depends on temperature.  相似文献   

6.
This study details the introduction of a gfp marker into an endophytic bacterial strain (Achromobacter marplatensis strain 17, isolated from sugar beet) to monitor its colonization of sugar beet (Beta. vulgaris L.). Stability of the plasmid encoding the gfp was confirmed in vitro for at least 72 h of bacterial growth and after the colonization of tissues, under nonselective conditions. The colonization was observed using fluorescence microscopy and enumeration of culturable endophytes in inoculated sugar beet plants that grew for 10 or 20 days. gfp-Expressing strains were re-isolated from the inner tissues of surface-sterilized roots and stems of inoculated plants, and the survival of the Achromobacter marplatensis 17:gfp strain in plants 20 days after inoculation, even in the absence of selective pressure, suggests that it is good colonizer. These results also suggest that this strain could be a useful tool for the delivery of enzymes or other proteins into plants. In addition, the study highlights that sugar beet plants can be used effectively for detailed in vitro studies on the interactions between A. marplatensis strain 17 and its host, particularly if a gfp-tagged strain of the pathogen is used.  相似文献   

7.
We compared the parameters of chlorophyll fluorescence between two sugar beet (Beta vulgaris L.) species differing in drought tolerance. Our results indicated that there were different responses to the drought stress of these sugar beet species. In drought-tolerant sugar beet, the F 0 increased slightly, while qN increased substantially, indicating that these plants can protect PSII reaction centers from the damage. F v/F m and qP decreased slightly during the initial period of drought stress; this suggests that there is a slight impact of drought stress on the openness of PSII reaction centers, and thus the plants did not suffer seriously. This was further shown by the decreased Yield and electron transfer rate. The parameters of chlorophyll fluorescence were stable and can be used as an important indicator for sugar beet seedlings in the early drought tolerance.  相似文献   

8.
Changes in fatty acid composition of chloroplast membrane lipids were investigated using tobacco (Nicotiana tabacum L., cv. Samsun) plants subjected to cold hardening for 6 days at 8°C. Under optimal growing temperature (22°C), the lipids of thylakoid membranes were characterized by elevated content of 16:3n-3 and 18:3n-3 fatty acids (FA). Compared to the lipids of chloroplast envelope membranes, the thylakoid lipids were less rich in the content of saturated, mono- and diunsaturated FA. The relative content of unsaturated FA in chloroplast membranes increased substantially during cold hardening, which was mainly due to the accumulation of 18:3n-3 FA. It is concluded that the observed changes in FA composition of chloroplast lipids during cold hardening adjust the fluidity of these membranes to the level sufficient for functioning of tobacco photosynthetic apparatus, which is a prerequisite for accumulation of assimilates and allows the hardened tobacco plants to survive under conditions of hypothermia.  相似文献   

9.
The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S 50) of −2.5°C after cooling at 0.5°C min−1 and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S 50 being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S 50 is lowered by 0.55°C, compared to the control, after 4 h freezing at −1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.  相似文献   

10.
The E-Screen assay was used to evaluate the estrogenicity of sugar beet by-products obtained from a dairy farm experiencing low success rates of embryo transfer. The beet tailings had ~3-fold the estradiol equivalents of the pelleted beet pulp (3.9 and 1.2 μg estradiol equivalents or E2Eq/kg dry matter, respectively). Whole sugar beets, sugar beet pellets, and shreds from several Midwest US locations were also evaluated by E-Screen. All pellets examined were found to have some estrogenic activity (range ~0.1–2.0 μg E2Eq/kg DM) with a mean of 0.46 μg/kg dry matter and median of 0.28 μg/kg dry matter. Relative E2Eq ranked as follows: pellets?>?shreds?>?most unprocessed roots. Using recommended feeding levels and conservative absorption estimates (10%), the estrogenic activity in the original samples could result in blood estradiol equivalents?≥?those found at estrus (10 pg/mL, cows). Chemical analyses revealed no known phytoestrogens, but the estrogenic mycotoxin, zearalenone, was found in 15 of 21 samples. Of significance to those using the E-Screen are our findings that contradict previous reports: ß-sitosterol has no proliferative effect and genistein’s glucuronidated form—genistin—is equal to genistein in proliferative effect. The latter is the result of deconjugation of genistin to genistein in the presence of fetal bovine serum (determined by LC MSMS). These data show the usefulness and caveats of the E-Screen in evaluation of feedstuffs, and indicate a potential for sugar beet by-products to contain zearalenone at concentrations that may impact reproduction.  相似文献   

11.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

12.
Digestibility trials with 8 lots of pelleted dried sugar beet pulp, carried out with wethers, demonstrated that dried sugar beet pulp is a highly digestible energy source for ruminants. From the digestion coefficients obtained, and a value number of 95, the starch equivalent of the dry matter of dried sugar beet pulp was calculated to be 73.3, while the net energy expressed in EFr was 619 EFr per kg dry matter. This is about 90% of the net energy content of barley containing 4% crude fibre in the dry matter.Beef production trials were carried out with 702 young bulls fed on complete dry rations based on dried sugar beet pulp. Two categories of animals were used: 322 baby-beef bulls (intensive system) slaughtered at 13 months of age at an average live-weight of 480 kg; and 380 young bulls coming from pasture (semi-intensive system) at about 250 kg live-weight, and fattened indoors up to at least 550 kg live-weight. With each category, three different rations have been studied. These contained respectively, 50, 60 or 70% pelleted dried sugar beet pulp; the remainder of the rations consisted of respectively 50, 40 or 30% concentrates. The diets were fed ad libitum; straw and water were always available. The three complete dry rations proved to be equally successful for intensive beef production. The carcass quality was good for all animals. The average daily gain obtained with the baby-beef bulls for the three rations respectively was 1 207 g, 1 274 g and 1 172 g; for the second category of bulls the mean growth rates were generally slightly higher: 1 281 g, 1 309 g and 1 357 g.The feed efficiency was higher with the younger animals: the baby-beef bulls (live-weight interval: 150–480 kg) consumed about 2.5 kg protein supplement and 3.5 kg dried sugar beet pulp per kg live-weight gain; while the intake per kg live-weight gain with the bulls of the second category (live-weight interval: 250–560 kg) amounted approximately to 2.75 kg protein supplement and 4 kg dried sugar beet pulp. Within each category of bulls, the feed cost per kg live-weight gain decreased with increasing amounts of dried sugar beet pulp in the rations.  相似文献   

13.
14.
15.
In the conventional view, the winter adaptation of membrane lipids is induced by temperature decrease. We propose that winter remodelling of membranes in Pyrrhocoris apterus is triggered by short-day photoperiod before the temperature decrease and changes caused by cold temperature represent the later phase of adaptation. The induction of diapause by short-day photoperiod results in an accumulation of phosphatidylethanolamine (PE) molecular species with C16:0/C18:2 acyl chains esterified to sn-1/sn-2 positions of glycerol at the expense of C18:0/C18:2. Proportions of C16:0/C18:2-PE are enhanced in short-day compared to long-day insects in both thoracic muscles (TM, 15.0 vs. 8.2%) and fat bodies (FB, 24.9 vs. 13.6 %). Proportions of C16:0/C18:2-PE are further enhanced during cold acclimation (to 26.5% in TM, 33.6 % in FB) at the expense of a more saturated species, C18:0/C18:1-PE. These changes are less prominent in phosphatidylcholines (PC). The effect of photoperiod seems to be mediated via the corpus allatum. Long-day non-diapause females deprived of their corpus allatum have the phospholipid molecular species profile similar to that found in short-day diapausing females. While the acyl chain remodelling is regulated by both photoperiod and temperature, the head group composition is regulated by temperature only. Similar to most other organisms, the level of PE is higher (50.3 vs. 43.5% in TM, 44.3 vs. 37.8% in FB) and that of PC is lower (35.9 vs. 40.2% in TM, 41.6 vs. 46.1 % in FB) at cold temperatures (≤1°C) compared to warm temperatures (≥16°C). In contrast to a general rule, the PE is less unsaturated than PC. In both TM and FB, proportions of unsaturated/unsaturated molecular species are consistently high in PC (56.3-67.5% in TM, 59.2-66.6% in FB), while they are consistently low in PE (19.1-26.7% in TM, 12.1-15.1% in FB). An adaptive significance of changes in the phospholipid composition for the low temperature and/or dehydration stress is discussed in relation to known physical properties of phospholipids.  相似文献   

16.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

17.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

18.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

19.
Plant species differ in nutrient uptake efficiency. With a pot experiment, we evaluated potassium (K) uptake efficiency of maize (Zea mays L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) grown on a low-K soil. Sugar beet and wheat maintained higher shoot K concentrations, indicating higher K uptake efficiency. Wheat acquired more K because of a greater root length to shoot dry weight ratio. Sugar beet accumulated more shoot K as a result of a 3- to 4-fold higher K influx as compared to wheat and maize, respectively. Nutrient uptake model NST 3.0 closely predicted K influx when 250 mg K kg?1 were added to the soil, but under-predicted K influx under low K supply. Sensitivity analysis showed that increasing soil solution K concentration (CLi) by a factor of 1.6–3.5 or buffer power (b) 10- to 50-fold resulted in 100% prediction of K influx. When both maximum influx (Imax) and b were increased by a factor of 2.5 in maize and wheat and 25 in sugar beet, the model could predict measured K influx 100%. In general, the parameter changes affected mostly calculated K influx of root hairs, demonstrating their possible important role in plant K efficiency.  相似文献   

20.
Summary Intact and functional mitochondria were isolated from sugar beet plants (Beta vulgaris L.) containing normal fertile (F) or cytoplasmic male-sterile (S1–S4) cytoplasms. Incorporation of 35S-methionine by mitochondria isolated from both roots and leaves showed approximately 20 major and ten minor translation products. Comparison of the polypeptide synthesis patterns produced by leaf mitochondria from fertile plants of three different species within the genus Beta revealed several taxonomically related differences. Contrary to this, the patterns of polypeptides synthesized by mitochondria from roots and leaves of sugar beet plants containing the F and S1–S4 cytoplasms were very similar; in the S1 and S2 cytoplasms no qualitative, and only a few quantitative, differences from the F cytoplasm were observed. Thus, in these cases, cytoplasmic male sterility in sugar beet is not correlated with the constitutive expression of variant polypeptides. In the S3 cytoplasm, however, an additional 6 kDa polypeptide was synthesized and in the S4 cytoplasm an additional 10 kDa polypeptide was observed when compared with the F cytoplasm. The expression of cytoplasmic male sterility in sugar beet may be associated with these variant polypeptides. The mitochondrial polypeptides synthesized were identical in plants with different nuclear backgrounds but with identical S1 cytoplasms. Mitochondria from plants with variants of the S4 cytoplasm in the same nuclear genotype also showed identical patterns of polypeptide synthesis, including the synthesis of the 10 kDa S4-specific polypeptide. Pulse-chase experiments did not affect the synthesis of this polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号