首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactive site loop of serpins undoubtedly defines in part their ability to inhibit a particular enzyme. Exchanges in the reactive loop of serpins might reassign the targets and modify the serpin-protease interaction kinetics. Based on this concept, we have developed a procedure to change the specificity of known serpins. First, reactive loops are very good substrates for the target enzymes. Therefore, we have used the phage-display technology to select from a pentapeptide phage library the best substrates for the human prostate kallikrein hK2 [Cloutier, S.M., Chagas, J.R., Mach, J.P., Gygi, C.M., Leisinger, H.J. & Deperthes, D. (2002) Eur. J. Biochem. 269, 2747-2754]. Selected substrates were then transplanted into the reactive site loop of alpha1-antichymotrypsin to generate new variants of this serpin, able to inhibit the serine protease. Thus, we have developed some highly specific alpha1-antichymotrypsin variants toward human kallikrein 2 which also show high reactivity. These inhibitors might be useful to help elucidate the importance of hK2 in prostate cancer progression.  相似文献   

2.
Human kallikrein 14 (KLK14) is a member of the human kallikrein gene family of serine proteases, and its protein, hK14, has recently been suggested to serve as a new ovarian and breast cancer marker. To gain insights into hK14's physiological functions, the active recombinant enzyme was obtained in an enzymatically pure state for biochemical and enzymatic characterizations. We studied its substrate specificity and behavior to various protease inhibitors, and identified candidate physiological substrates. hK14 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type I, collagen type IV, fibrinogen, and high-molecular-weight kininogen. Furthermore, it rapidly hydrolyzed insulin-like growth factor binding protein-3 (IGFBP-3). These findings suggest that hK14 may be implicated in tumor progression in ovarian carcinoma.  相似文献   

3.
The reactive center loop (RCL) of serpins plays an essential role in the inhibition mechanism acting as a substrate for their target proteases. Changes within the RCL sequence modulate the specificity and reactivity of the serpin molecule. Recently, we reported the construction of alpha1-antichymotrypsin (ACT) variants with high specificity towards human kallikrein 2 (hK2) [Cloutier SM, Kündig C, Felber LM, Fattah OM, Chagas JR, Gygi CM, Jichlinski P, Leisinger HJ & Deperthes D (2004) Eur J Biochem271, 607-613] by changing amino acids surrounding the scissile bond of the RCL and obtained specific inhibitors towards hK2. Based on this approach, we developed highly specific recombinant inhibitors of human kallikrein 14 (hK14), a protease correlated with increased aggressiveness of prostate and breast cancers. In addition to the RCL permutation with hK14 phage display-selected substrates E8 (LQRAI) and G9 (TVDYA) [Felber LM, Borgo?o CA, Cloutier SM, Kündig C, Kishi T, Chagas JR, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP & Deperthes D (2005) Biol Chem386, 291-298], we studied the importance of the scaffold, serpins alpha1-antitrypsin (AAT) or ACT, to confer inhibitory specificity. All four resulting serpin variants ACT(E8), ACT(G9), AAT(E8) and AAT(G9) showed hK14 inhibitory activity and were able to form covalent complex with hK14. ACT inhibitors formed more stable complexes with hK14 than AAT variants. Whereas E8-based inhibitors demonstrated a rather relaxed specificity reacting with various proteases with trypsin-like activity including several human kallikreins, the two serpins variants containing the G9 sequence showed a very high selectivity for hK14. Such specific inhibitors might prove useful to elucidate the biological role of hK14 and/or its implication in cancer.  相似文献   

4.
Changes in cell culture conditions influence the metabolism of cells, which consequently affects the quality of the products that they produce, such as viral vectors, recombinant proteins, or vaccines. Currently there is no effective technique available to monitor global quality of cells in cell culture. Here we describe a new method using gene expression profiling by microarray to predict the quality of cell substrates. Human embryonic kidney 293 cells are a commonly used cell substrate in the production of biological products. We demonstrate that the yield of adenoviral vectors was lower in over-confluent 293 cells, compared to 40 or 90% confluent cells. Total RNA derived from these cells of different confluence states was reverse transcribed, labeled, and used to hybridize 10K cDNA arrays to determine biomarkers for confluence states. Phenotype scatter-plot analysis and cluster analysis were used for class discovery. Based on this approach, we identified genes that were either up-regulated or down-modulated in response to different cell confluence states. By multivariate predictive models we identified a set of 37 genes that were either down-regulated or up-regulated compared to 90% confluent cells as a predictor of cell confluence and quality of 293 cell cultures. The predictive accuracy of these models was assessed by the leave-one-out cross-validation method. The expression of selected gene predictors was validated by quantitative PCR analysis. Our results demonstrate that gene expression profiling can assess the quality of cell substrates prior to large-scale production of a biological product.  相似文献   

5.
6.
A highly sensitive fluorogenic hexosaminidase substrate, fluorescein di(N-acetyl-beta-D-glucosaminide) (FDGlcNAc), was prepared essentially as described previously [Chem. Pharm. Bull. 1993, 41, 314] with some modifications. The fluorescent analog is a substrate for a number of hexosaminidases but here we have focused on the cytoplasmic O-GlcNAcase isoforms. Kinetic analysis using purified O-GlcNAcase and its splice variant (v-O-GlcNAcase) expressed in Escherichia coli suggests that FDGlcNAc is a much more efficient substrate (Km = 84.9 microM) than the conventional substrate, para-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside (pNP-beta-GlcNAc, Km = 1.1 mM) and a previously developed fluorogenic substrate, 4-methylumbelliferyl 2-acetamido-2-deoxy-beta-D-glucopyranoside [MUGlcNAc, Km = 0.43 mM; J. Biol. Chem. 2005, 280, 25313] for O-GlcNAcase. The variant O-GlcNAcase, a protein lacking the C-terminal third of the full-length O-GlcNAcase, exhibited a Km of 2.1 mM with respect to FDGlcNAc. This shorter isoform was not previously thought to exhibit O-GlcNAcase activity based on in vitro studies with pNP-beta-GlcNAc. However, both O-GlcNAcase isoforms reduced O-GlcNAc protein levels extracted from HeLa and HT-29 cells in vitro, indicating that the splice variant is a bona fide O-GlcNAcase. Fluorescein di-N-acetyl-beta-D-galactosaminide (FDGalNAc) is not cleaved by these enzymes, consistent with previous findings that the O-GlcNAcase has substrate specificity toward O-GlcNAc but not O-GalNAc. The enzymatic activity of the shorter isoform of O-GlcNAcase was first detected by using highly sensitive fluorogenic FDGlcNAc substrate. The finding that O-GlcNAcase exists as two distinct isoforms has a number of important implications for the role of O-GlcNAcase in hexosamine signaling.  相似文献   

7.
噬菌体抗体库技术是一项新兴的基因工程抗体技术,应用这项技术获得高特异性抗体的关键之一就是筛选环节。根据抗原性质以及筛选目的的不同,筛选方法的选择也不相同,各种筛选策略的优化对中和抗体的获得有至关重要的作用。  相似文献   

8.
The anti-Smith (Sm) autoantibody response is highly specific for systemic lupus erythematosus and is predominantly targeted to the Sm-B/B' and -D1 polypeptides. In all animal species thus far studied, anti-Sm Abs initially recognize proline-rich epitopes in the carboxyl terminus of the Sm-B/B' protein and subsequently to multiple other epitopes in B/B' and D. The absence of appropriate mAbs has limited our understanding of the genetic and structural basis of this autoimmune response. Using phage-display technology and lymphocytes from a systemic lupus erythematosus patient we have generated the first and only panel of human IgG anti-Sm mAbs thus far available. These Abs reproduced to a remarkable extent the serological reactivity of the patient. Epitope mapping and genetic studies revealed that the anti-Sm response is produced by distinct B cell clones with restricted epitope reactivity. All of the Abs in our study were exclusively encoded by different members of the V(H)4 gene family. On the aggregate, our results demonstrate that combinatorial libraries can recapitulate the immune repertoire of peripheral blood B memory cells and that epitope spreading appears to occur through the sequential recruitment of nonclonally related autoreactive B cell clones.  相似文献   

9.
10.
Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated.  相似文献   

11.
Urinary proteome profiling using microfluidic technology on a chip   总被引:1,自引:0,他引:1  
Clinical diagnostics and biomarker discovery are the major focuses of current clinical proteomics. In the present study, we applied microfluidic technology on a chip for proteome profiling of human urine from 31 normal healthy individuals (15 males and 16 females), 6 patients with diabetic nephropathy (DN), and 4 patients with IgA nephropathy (IgAN). Using only 4 microL of untreated urine, automated separation of proteins/peptides was achieved, and 1-7 (3.8 +/- 0.3) spectra/bands of urinary proteins/peptides were observed in the normal urine, whereas 8-16 (11.3 +/- 1.2) and 9-14 (10.8 +/- 1.2) spectra were observed in urine samples of DN and IgAN, respectively. Coefficient of variations of amplitudes of lower marker (1.2 kDa), system spectra (6-8 kDa), and upper marker (260.0 kDa) were 22.84, 24.92, and 32.65%, respectively. ANOVA with Tukey post-hoc multiple comparisons revealed 9 spectra of which amplitudes significantly differed between normal and DN urine (DN/normal amplitude ratios ranged from 2.9 to 3102.7). Moreover, the results also showed that 3 spectra (with molecular masses of 12-15, 27-28, and 34-35 kDa) were significantly different between DN and IgAN urine (DN/IgAN amplitude ratios ranged from 3.9 to 7.4). In addition to the spectral amplitudes, frequencies of some spectra could differentiate the normal from the diseased urine but could not distinguish between DN and IgAN. There was no significant difference, regarding the spectral amplitude or frequency, observed between males and females. These data indicate that the microfluidic chip technology is applicable for urinary proteome profiling with potential uses in clinical diagnostics and biomarker discovery.  相似文献   

12.
13.
Novel internally quenched fluorescence peptide substrates containing sequence specific sites for cleavage by multiple proteases were designed and synthesized. The 28 and 29 residue peptides contain an N-terminal fluorescence acceptor group, 4-(4-dimethylaminophenylazo)benzoic acid (DABCYL), and a C-terminal fluorescence donor group, 5-(2-aminoethylamino)naphthalene-1-sulfonic acid (EDANS). Efficient energy transfer between the donor and acceptor groups flanking the peptide sequence was achieved by incorporation of a central DPro-Gly segment, which serves as a conformation nucleating site, inducing hairpin formation. This multispecificity protease substrate was used to profile the proteolytic activities in the malarial parasite Plasmodium falciparum in a stage dependent manner using a combination of fluorescence and MALDI mass spectrometry. Cysteine protease activity was shown to be dominating at neutral pH, whereas aspartic protease activity contributed predominantly to the proteolytic repertoire at acidic pH. Maximum proteolysis was observed at the trophozoite stage followed by the schizonts and the rings.  相似文献   

14.
15.
Human kallikrein 1-related peptidases (KLKs) form a subfamily of 15 extracellular (chymo)tryptic-like serine proteases. KLKs 4, 5, 13 and 14 display altered expression/activity in diverse pathological conditions, including cancer. However, their distinct (patho)physiological roles remain largely uncharacterized. As a step toward distinguishing their proteolytic functions, we attempt to define their primary and extended substrate specificities and identify candidate biological targets. Heterologously expressed KLKs 4, 5, 13 and 14 were screened against fluorogenic 7-amino-4-carbamoylmethylcoumarin positional scanning-synthetic combinatorial libraries with amino acid diversity at the P1-P4 positions. Our results indicate that these KLKs share a P1 preference for Arg. However, each KLK exhibited distinct P2-P4 specificities, attributable to structural variations in their surface loops. The preferred P4-P1 substrate recognition motifs based on optimal subsite occupancy were as follows: VI-QSAV-QL-R for KLK4; YFWGPV-RK-NSFAM-R for KLK5; VY-R-LFM-R for KLK13; and YW-KRSAM-HNSPA-R for KLK14. Protein database queries using these motifs yielded many extracellular targets, some of which represent plausible KLK substrates. For instance, cathelicidin, urokinase-type plasminogen activator, laminin and transmembrane protease serine 3 were retrieved as novel putative substrates for KLK4, 5, 13 and 14, respectively. Our findings may facilitate studies on the role of KLKs in (patho)physiology and can be used in the development of selective KLK inhibitors.  相似文献   

16.
We have developed a highly sensitive, specific and reproducible method for microRNA (miRNA) expression profiling, using the BeadArray™ technology. This method incorporates an enzyme-assisted specificity step, a solid-phase primer extension to distinguish between members of miRNA families. In addition, a universal PCR is used to amplify all targets prior to array hybridization. Currently, assay probes are designed to simultaneously analyse 735 well-annotated human miRNAs. Using this method, highly reproducible miRNA expression profiles were generated with 100–200 ng total RNA input. Furthermore, very similar expression profiles were obtained with total RNA and enriched small RNA species (R2 ≥ 0.97). The method has a 3.5–4 log (105–109 molecules) dynamic range and is able to detect 1.2- to 1.3-fold-differences between samples. Expression profiles generated by this method are highly comparable to those obtained with RT–PCR (R2 = 0.85–0.90) and direct sequencing (R = 0.87–0.89). This method, in conjunction with the 96-sample array matrix should prove useful for high-throughput expression profiling of miRNAs in large numbers of tissue samples.  相似文献   

17.
18.
Prolylcarboxypeptidase (PRCP) is a serine protease that catalyzes the cleavage of C‐terminal amino acids linked to proline in peptides. It is ubiquitously expressed and is involved in regulating blood pressure, proliferation, inflammation, angiogenesis, and weight maintenance. To identify the candidate proximal target engagement markers for PRCP inhibition in the central nervous system, we profiled the peptidome of human cerebrospinal fluid to look for PRCP substrates using a MS‐based in vitro substrate profiling assay. These experiments identified a single peptide, with the sequence YPRPIHPA, as a novel substrate for PRCP in human cerebrospinal fluid. The peptide YPRPIHPA is from the extracellular portion of human endothelin B receptor‐like protein 2.  相似文献   

19.
Dipeptidyl peptidase-IV is a cell surface protease which plays an important role in glucose homeostasis through proteolytic inactivation of incretin hormones, primarily glucagon like peptide-1 (GLP-1). Substrate N-terminal amino acid (S2-S1) specificity is rather clearly defined, while no substantial information is available on the significance of amino acid interactions towards the C-terminus after the scissile bond (so called prime S1'-S4' or distant S5'-S28' sites). In the present study the increasing length of the peptide towards prime sites (S1'-S4') resulted in approximately 7-fold decrease in Km. Moreover, the Km for GLP-1 cleavage was comparable to that of an S2-S4' peptide, suggesting that few, if any, important enzyme-substrate interactions occur beyond the active site. Effect of substrate length on kcat was less obvious, but kcat/Km showed an increasing trend when His-Ala-pNA (representing the natural two N-terminal residues) was compared to GLP-1. To probe the impact of increasing substrate length on the free energy of activation (as has been suggested for elastase and chymotrypsin) we performed temperature studies. To adequately interpret thermodynamic data we sought to understand what steps limit the kcat expression. Steady-state parameters of the reactions catalyzed by serine proteases are composed of microscopic constants describing binding, acylation, and deacylation steps. Viscosity and pre-steady-state studies suggested that His-Ala-pNA cleavage is limited in the deacylation half-reaction, most likely the product release step. Thus, the free energy of activation, as calculated from the Eyring equation, is underestimated (at least for His-Ala-pNA) and the effect of substrate length on the acylation step (and transition-state stabilization) could not be unambiguously assessed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号